Questions marquées «self-study»

Un exercice de routine à partir d'un manuel, d'un cours ou d'un test utilisé pour une classe ou une auto-étude. La politique de cette communauté est de «fournir des conseils utiles» pour ces questions plutôt que des réponses complètes.

1
Distribution asymptotique d'échantillons censurés de
Soit la statistique d'ordre d'un échantillon iid de taille de . Supposons que les données soient censurées afin que nous ne voyions que le haut des données, c'est-à-direMettez , quelle est la distribution asymptotique de X(1),…,X(n)X(1),…,X(n)X_{(1)}, \ldots, X_{(n)}nnnexp(λ)exp⁡(λ)\exp(\lambda)(1−p)×100(1−p)×100(1-p) \times 100%X(⌊pn⌋),X(⌊pn⌋+1),…,X(n).X(⌊pn⌋),X(⌊pn⌋+1),…,X(n).X_{(\lfloor p n \rfloor )}, X_{(\lfloor p n\rfloor + 1)}, \ldots, …

3
Comment effectuer une SVD pour imputer des valeurs manquantes, un exemple concret
J'ai lu les excellents commentaires sur la façon de traiter les valeurs manquantes avant d'appliquer SVD, mais j'aimerais savoir comment cela fonctionne avec un exemple simple: Movie1 Movie2 Movie3 User1 5 4 User2 2 5 5 User3 3 4 User4 1 5 User5 5 1 5 Étant donné la matrice …
8 r  missing-data  data-imputation  svd  sampling  matlab  mcmc  importance-sampling  predictive-models  prediction  algorithms  graphical-model  graph-theory  r  regression  regression-coefficients  r-squared  r  regression  modeling  confounding  residuals  fitting  glmm  zero-inflation  overdispersion  optimization  curve-fitting  regression  time-series  order-statistics  bayesian  prior  uninformative-prior  probability  discrete-data  kolmogorov-smirnov  r  data-visualization  histogram  dimensionality-reduction  classification  clustering  accuracy  semi-supervised  labeling  state-space-models  t-test  biostatistics  paired-comparisons  paired-data  bioinformatics  regression  logistic  multiple-regression  mixed-model  random-effects-model  neural-networks  error-propagation  numerical-integration  time-series  missing-data  data-imputation  probability  self-study  combinatorics  survival  cox-model  statistical-significance  wilcoxon-mann-whitney  hypothesis-testing  distributions  normal-distribution  variance  t-distribution  probability  simulation  random-walk  diffusion  hypothesis-testing  z-test  hypothesis-testing  data-transformation  lognormal  r  regression  agreement-statistics  classification  svm  mixed-model  non-independent  observational-study  goodness-of-fit  residuals  confirmatory-factor  neural-networks  deep-learning 




1
Coefficient de corrélation pour une distribution uniforme sur une ellipse
Je lis actuellement un article qui prétend que le coefficient de corrélation pour une distribution uniforme à l' intérieur d'une ellipse fX,Y(x,y)={constant0if (x,y) inside the ellipseotherwisefX,Y(x,y)={constantif (x,y) inside the ellipse0otherwisef_{X,Y} (x,y) = \begin{cases}\text{constant} & \text{if} \ (x,y) \ \text{inside the ellipse} \\ 0 & \text{otherwise} \end{cases} est donné par ρ …



2
Trouver la distribution conjointe de et
Cette question est tirée de la question 7.6.7 de l'introduction à la statistique mathématique de Robert Hogg, 6e version. Le problème est : Soit un échantillon aléatoire de taille d'une distribution avec le pdfnnnf(x;θ)=(1/θ)exp(−x/θ)I(0,∞)(x)f(x;θ)=(1/θ)exp⁡(−x/θ)I(0,∞)(x)f(x;\theta)=(1/\theta)\exp(-x/\theta)\mathbb{I}_{(0,\infty)}(x) Trouvez le MLE et la MVUE de .P(X≤2)P(X≤2)P(X \le 2) Je sais comment trouver le MLE. …


1
Régression sans interception: dériver
Dans An Introduction to Statistical Learning (James et al.), À la section 3.7, exercice 5, il est indiqué que la formuleβ^1β^1\hat{\beta}_1en supposant une régression linéaire sans interception est β^1=∑i=1nxiyi∑i=1nx2i,β^1=∑i=1nxiyi∑i=1nxi2,\hat{\beta}_1 = \dfrac{\displaystyle\sum\limits_{i=1}^{n}x_iy_i}{\displaystyle \sum\limits_{i=1}^{n}x_i^2}\text{,} où β^0=y¯−β^1x¯β^0=y¯−β^1x¯\hat{\beta}_0 = \bar{y}-\hat{\beta}_1\bar{x} et β^1=SxySxxβ^1=SxySxx\hat{\beta}_1 = \dfrac{\displaystyle S_{xy}}{S_{xx}} sont les estimations habituelles sous OLS pour une régression …

2
Éléments des alternatives d'apprentissage statistique
Elements of Statistical Learning (ESL) est un livre d'une ampleur et d'une profondeur fantastiques. Il couvre l'essentiel des méthodes très modernes en citant les articles d'où proviennent ces études originales. Cependant, je trouve vraiment le langage du livre très très prohibitif. Je pense qu'il existe un moyen plus simple de …

1
Génération de variables aléatoires binomiales avec une corrélation donnée
Supposons que je sache comment générer des variables aléatoires binomiales indépendantes. Comment puis-je générer deux variables aléatoiresXXX et YYY tel que X∼Bin(8,23),Y∼Bin(18,23) and Corr(X,Y)=0.5X∼Bin(8,23),Y∼Bin(18,23) and Corr(X,Y)=0.5X\sim \text{Bin}(8,\dfrac{2}{3}),\quad Y\sim \text{Bin}(18,\dfrac{2}{3})\ \text{ and }\ \text{Corr}(X,Y)=0.5 J'ai pensé essayer d'utiliser le fait que XXX et Y−ρXY−ρXY-\rho X sont indépendants où ρ=Corr(X,Y)ρ=Corr(X,Y)\rho=Corr(X,Y) mais je …

3
Trouvez la distribution et passez à la distribution normale
J'ai des données qui décrivent la fréquence à laquelle un événement se produit pendant une heure ("nombre par heure", nph) et la durée des événements ("durée en secondes par heure", dph). Ce sont les données d'origine: nph <- c(2.50000000003638, 3.78947368414551, 1.51456310682008, 5.84686774940732, 4.58823529414907, 5.59999999993481, 5.06666666666667, 11.6470588233699, 1.99999999998209, NA, 4.46153846149851, 18, …
8 normal-distribution  data-transformation  logistic  generalized-linear-model  ridge-regression  t-test  wilcoxon-signed-rank  paired-data  naive-bayes  distributions  logistic  goodness-of-fit  time-series  eviews  ecm  panel-data  reliability  psychometrics  validity  cronbachs-alpha  self-study  random-variable  expected-value  median  regression  self-study  multiple-regression  linear-model  forecasting  prediction-interval  normal-distribution  excel  bayesian  multivariate-analysis  modeling  predictive-models  canonical-correlation  rbm  time-series  machine-learning  neural-networks  fishers-exact  factorisation-theorem  svm  prediction  linear  reinforcement-learning  cdf  probability-inequalities  ecdf  time-series  kalman-filter  state-space-models  dynamic-regression  index-decomposition  sampling  stratification  cluster-sample  survey-sampling  distributions  maximum-likelihood  gamma-distribution 

1
Dériver l'algorithme K-means comme limite de maximisation des attentes pour les mélanges gaussiens
Christopher Bishop définit la valeur attendue de la fonction de vraisemblance du journal des données complètes (c'est-à-dire en supposant que l'on nous donne à la fois les données observables X et les données latentes Z) comme suit: EZ[lnp(X,Z∣μ,Σ,π)]=∑n=1N∑k=1Kγ(znk){lnπk+lnN(xn∣ μk,Σk)}(1)(1)EZ[ln⁡p(X,Z∣μ,Σ,π)]=∑n=1N∑k=1Kγ(znk){ln⁡πk+ln⁡N(xn∣ μk,Σk)} \mathbb{E}_\textbf{Z}[\ln p(\textbf{X},\textbf{Z} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi})] = \sum_{n=1}^N \sum_{k=1}^K \gamma(z_{nk})\{\ln …

En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.