Trouvez la distribution et passez à la distribution normale


8

J'ai des données qui décrivent la fréquence à laquelle un événement se produit pendant une heure ("nombre par heure", nph) et la durée des événements ("durée en secondes par heure", dph).

Ce sont les données d'origine:

nph <- c(2.50000000003638, 3.78947368414551, 1.51456310682008, 5.84686774940732, 4.58823529414907, 5.59999999993481, 5.06666666666667, 11.6470588233699, 1.99999999998209, NA, 4.46153846149851, 18, 1.05882352939726, 9.21739130425452, 27.8399999994814, 15.3750000002237, NA, 6.00000000004109, 9.71428571436649, 12.4848484848485, 16.5034965037115, 20.6666666666667, 3.49999999997453, 4.65882352938624, 4.74999999996544, 3.99999999994522, 2.8, 14.2285714286188, 11.0000000000915, NA, 2.66666666666667, 3.76470588230138, 4.70588235287673, 13.2727272728677, 2.0000000000137, 18.4444444444444, 17.5555555555556, 14.2222222222222, 2.00000000001663, 4, 8.46153846146269, 19.2000000001788, 13.9024390245481, 13, 3.00000000004366, NA, 7.36000000006855, 1.61137440758472, 1.50000000000873, 3.36585365857481, 22.3750000003256, 10.8387096775008, 2.92307692305075, 3.48837209304214, 5.17647058827074, 37.6666666666667, 1.17647058824335, 7.45454545462435, 36.2352941171508, 6.82352941167125, 2.22222222222222, 6.13333333333333, 11.4285714286665, 42.7058823523563, 28.1052631584975, 18.3333333333333, 1.24999999999091, 5.1034482758211, 1.82857142855926, 1.30693069306629, 3.22222222222222, 17.2800000001609, 10.5714285715165, 7.81818181826456, 3.14285714288328, 4.05194805197256, 3.6, 23.0909090904203, 0.249999999998181, 10, 27.3043478258106, 2.49999999998181, 2.00000000001663, 9.14285714293317, 4.74999999996544, 29.3999999996577, 16.9999999998021, 15.7777777777778, 1.74999999998727, 3.46666666666667, 2.45161290324422, 2.05231388331614, 2.60000000001513, 15.4054054053569, 4, 12.2222222222222, 2.46153846151642, 8.15384615399219, 2.23529411761644, 15.1111111111111, 0.23529411764867, 10.5454545455661, 17.5714285715747, 2.3030303030303, 1.37931034481651, 8.32000000007749, 5.1578947368105, 24.1999999997183, 15.4782608694085, 21.8749999998408, 2.74999999997999, 9.91304347823578, 3.86206896548623, 1.16959064328441, 2.84210526319272, 12.857142856929, 4, 3.69230769227463, 2, NA, 1.88888888888889, 15.4285714283148, 0.222222222222222, 6.16666666666667, 13.1034482757569, 3.19999999996275, 4.87499999996453, 2.88000000002682, 5.12499999996271, 26.6666666666667, 9.75000000014188, 17.2048192770602, 1.99999999998545, 1.65517241377981, 3.16666666666667, 2.23529411766237, 6.82352941181143, 2.74999999991996, 2.99999999997817, 11.4929577463281, 1.59999999998137, 8.65116279074452, 5.69230769240964, 13.7777777777778, 0.222222222222222, 10.6000000002468, 13.91304347812, 2.75862068963302, NA, 4.26666666666667, 5.64705882356808, 2.74999999997999, 15.047619047619, 16.6666666666667, 1.49999999998909, 4.62499999996635, 5.71428571428571, 1.83206106868927, 2.44444444444444, 2.4, 3.9999999999709, 2.33333333333333, 3.20000000007451, 5.931034482711, 7.14285714273835, 14.7272727274286, 0.352941176465754, 8.40000000019558, 10.1250000001473, 2.66666666666667, NA, 2.66666666666667, 4.7058823529734, 4.83333333333333, 9.31034482751146, 24.5882352937809, 2.13333333333333, 10.1739130434525, 5.56521739124801, 2.12658227848728, 1.88888888888889, 5.80000000013504, 7.14285714291654, 1.71428571429997, 1.99999999994179, NA, 5.00000000007276, NA, 0.129032258062578, 8.22222222222222, 7.16666666666667, 4.13793103444954, 2.82352941178404, 3.07692307697818, 4.00000000004902, 4.74999999986176, 9.75000000014188, 20.1333333333333, 2.66666666666667, 6.78947368416893, 1.46666666666667, 1.73195876289076, 4.76923076931619, 2.88888888888889, 7.4285714286332, 5.2, 3.384615384676, 4.7727272727399, 6.59999999992317, 11.4545454546667, 1.41176470586302, 11.1999999998696, 6.08000000005662, 4, 4.71428571432492, 5.00000000004158, 6.8, 6.83870967747072, 14.2500000002074, 5.49999999983993, 2.4, 4.71910112354612, 4, 1.72185430463842, 2.44444444444444, 4.30769230776946, 6.30769230780528, 3.53846153852491, 4.35294117641097, NA, 5.99999999990022, NA, NA, 7.42857142857143, 10.1333333333333, 6.79999999992084, 5.54838709681587, 1.83333333333333, 7.06666666666667, 2.9090909091217, 10.8000000001006, NA, 2.13333333333333, NA, 5.09090909090909, 4.21052631570563, 4.00000000003326, 4.28571428571429, 4.28571428574992, 2.49999999998181, 2.76923076928037, 4.99999999985448, 3.87500000005639, NA, NA, 12.2105263159391, 5.44444444444444, 2.6249999999809, 3.74193548389907, 3.28571428574161, 4.88888888888889, 9.33333333333333, 4.21621621620295, NA, 0.8, 4.5306122448549, 4.14285714289159, 3.1137724550985, 0.266666666666667, 5.27272727261567, 1.84615384613731, 8.36363636372488, 2.42857142853104, NA, 2.42857142853104, 8.28571428578318, 1.64705882350685, 8.2, 6.88888888888889, 1.74999999998727, 7.6, 3.33333333333333, 6.24999999995453, 9.56521739120752, 4.93333333333333, 16.4, 2.53333333333333, 7.2, 1.33333333333333, 3.3962264151018, 2, 9.38461538453135, 1.57142857144164, 3.45454545458201, 5.37499999996089, 7.74193548375467, 3.38461538458508, 7, NA, 4.54545454545455, 14.5, 1.93939393939394, 4.33333333333333, 4, 6.58823529402741, 2.90909090902933, 3.32530120480995, 25.6666666666667, 2, 6.54545454545455, 4.4, 3.54378818739119, 1.62499999998818, 4.22222222222222, 2.53333333333333, 14.6666666666667, 2.96296296296296, NA, 3.00000000004366, 16.1999999998114, 1.55555555555556, 3.11111111111111, NA, 4.8, 3.99999999997339, 4, 6.37499999995362, 2.7999999999674, NA, 32.8, 2.49999999998181, 11.0561797754255, NA, 2.75229357793903, 1.7142857142572, 7.66666666666667, 7.28571428577487, 2.36363636358633, 2.14285714287496, 6.27272727274387, 3.62499999997362, 19.6666666666667, 1.71428571427431, 6.60869565210701, 5.57894736838687, 5.84615384610149, 3.03030303030303, 1.33333333333333, 4.87499999996453, 4.71428571432492, 4.74418604653732, 13.0588235292329, 3.12500000004547, NA, 3.37500000004911, 2.41525423729648, 2.37499999998272, 4.54545454550265, 6.28571428576655, 2.55555555555556, 3.17647058819179, 5.59999999993481, 5.85714285719156, 7.42857142844789, NA, 4.83333333333333, 5.33333333333333, 4.48484848484848, 2.93333333333333, 3.83333333333333, 5.52941176474375, 9.33333333333333, 5.16666666666667, 18, 2.82352941178404, 5.54838709681587, 3.55555555555556, 1.25237191650965, 2, 2.16666666666667, 7.16666666666667, 3.00000000002495, 2.83333333333333, 2.48275862068966, 4.42857142860825, 11.1428571426718, NA, 5.52380952380952, 34.3448275859312, 4.75000000006912, 3.26315789471685, 10.2857142857998, 10.5555555555556, 5.00000000004158, 19.0843373493441, 20.6153846152, 2.24999999998363, 8.59259259259259, 4.25806451616101, 2.85714285716014, 5.1578947368105, 8.66666666666667, 3.14285714280487, 6.30769230763582, 6.79999999992084, 8.07692307663376, 5.73333333333333, 8.46153846146269, 2.34482758618807, 4.31999999991953, 4.57142857135254, 2.87500000004184, 2.28571428567627, 0.857142857149985, 10.2352941175069, 3.26086956520914, NA, 13.3333333333333, 2.75000000004002, 6.45161290312889, 3.61290322575218, 1.48854961831995, 3.37499999997544, 4.0540540540413, 5.73333333333333, 3.85714285707871, 3, 6.31578947364551, 1.55555555555556, 7.84615384608358, 0.4, 7.66666666666667, NA, 7.85185185185185, 2.59090909091595, 7.28571428577487, 5.74999999995816, 3.28571428574161, 16.043478260829, 15.8000000003679, 2.50000000003638, NA, 2.06451612904776, 1.82163187855948, 0.874999999993634, 13.2000000001229, 6.92307692301493, 3.7142857143166, 3.00000000001343, 5.83333333333333, 3.86666666666667, 9.39999999989057, 2.49999999998181, 6.24000000005811, 4.58823529414907, 3.72413793109428, 3.21428571427235, 6.85714285719988, 8.42857142864151, 5.23076923086291, 10.5454545455661, 14.1428571429747, 4.00000000005821, 4.08791208795393, 8.47058823517811, 3.94422310755509, 3.62500000005275, 6.0000000001397, 1.33333333333333, 3.73333333333333, 6.31578947352942, NA, 4.53333333333333, 8.46153846169001, 0.470588235287673, 2.28571428571429, 22.7142857144746, 8.00000000012846, 2.8108108108285, 4.57142857146658, 5.87500000008549, 6.42857142862488, 19.2258064513241, 13.4666666666667, 3.46666666666667, 4.90322580648844, 3.51515151515152, 1.56862745098755, 1.53846153844776, 3.63636363636364, 4.71428571432492, 3.06666666666667, 4.61538461546728, NA, 2.83333333333333, 5.53846153841194, 1.80645161287609, 9.14285714285714, 2.42857142853104, 3.2, 5.00000000007276, 4.42857142860825, 6.12500000008913, 3.24999999990541, 4.16326530608288, 14.6666666666667, 5.37499999996089, 7.43478260867684, 9.93548387104236, 3.73205741626378, 2.24999999998363, 13.7777777777778, 4.74074074074074, 7.4285714286332, 3.61904761904762, 7.13513513511269, 5.28571428575824, 5, 2.5882352940822, 11.5000000001673, 27.1249999998026, 2.875, 2.81081081077544, 9.42857142864983, 7.05882352931509, 3.83333333333333, 16.8695652172205, 16.7692307690806, 10.1333333333333, 5.45454545455989, 7.8750000001146, 1.6883116883219, 2.66666666666667, 11.7857142856653, 3.33333333333333, 6.33333333333333, 7.39999999991385, 12.5882352942039, 4.00000000003326, 6.72727272734392, 3.03030303030303, 6, 30.6666666666667, 3.74999999997272, 3.00000000003011, 8.00000000006652, 8.00000000006009, 2.57142857144995, 10.695652173886, 14.2666666666667, 7.75000000011278, 2.51162790697674, 6.33333333333333, 3.28125000004775, 1.88888888888889, 10.4000000002421, 4.87499999996453, 13.7142857143998, 8.5, NA, 4.87499999996453, 8.181818181645, 1.24999999999091, 4.38095238095238, 27.1764705878631, 2.37499999998272, 2.94117647060838, 11.7142857143831, 5.99999999996324, 2.37499999998272, 14.7637795275455, 14.313253012008)
dph <- c(3.12500000004547, 6.69473684199041, 4.3106796117187, 11.6937354988146, 103.882352941888, 10.9999999998719, 7.33333333333333, 20.3529411761918, 5.23076923072239, NA, 4.61538461534328, 47.5555555555556, 2.94117647054795, 18.9565217389385, 44.3199999991745, 28.5000000004147, NA, 10.4705882353658, 19.000000000158, 25.8181818181818, 43.2167832173461, 51.5555555555556, 8.37499999993906, 6.91764705878563, 9.37499999993179, 5.64705882345207, 4.53333333333333, 27.4285714286627, 14.4285714286914, NA, 1.6, 5.76470588227399, 4.70588235287673, 55.2727272733122, 2.11764705883803, 30.8888888888889, 41.2222222222222, 23.4444444444444, 2.42857142859162, 6.2, 17.0769230767702, 21.2800000001982, 40.8292682931466, 14.5, 6.25000000009095, NA, 15.0400000001401, 5.68720379147547, 2.40000000001397, NA, 26.3750000003838, 18.0645161291679, 3.99999999996418, 6.13953488375417, 8.47058823535212, 128.666666666667, 2.23529411766237, 34.1818181821799, 115.999999998411, 5.99999999991782, 5.77777777777778, 10.6666666666667, 15.4285714286997, 54.8235294110138, 81.315789475428, 42.3333333333333, 1.74999999998727, 7.99999999993577, 4.34285714282825, 1.90099009900552, 5.22222222222222, 39.840000000371, 25.1428571430662, 7.81818181826456, 8.57142857149985, 15.2727272728196, 6.4, 93.0909090889387, 0.374999999997272, 23.1666666666667, 29.3913043475286, 0.874999999993634, 1.71428571429997, 13.5714285715414, 5.49999999995998, 134.799999998431, 77.7999999990943, 18, 2.24999999998363, 5.73333333333333, 3.09677419357165, 2.29376257547098, 5.70000000003318, 23.1891891891162, 14, 13.5555555555556, 1.69230769229254, 9.23076923093455, 4.35294117641097, 48.6666666666667, 0.352941176473005, 16.0000000001693, 56.7142857147573, 1.81818181818182, 1.37931034481651, 19.6800000001833, 6.63157894732779, 134.999999998428, 41.0434782604541, 26.8749999998045, 3.62499999997362, 16.5652173912624, 10.3448275861238, 1.28654970761285, 2.94736842108875, 13.4285714283481, 7.6, 3.2307692307403, 2, NA, 3.44444444444444, 93.1428571413081, 0.111111111111111, 13.6666666666667, 28.1379310342568, 2.39999999997206, 7.8749999999427, 4.00000000003725, 6.99999999994907, 60, 26.8750000003911, 30.5060240963, 3.12499999997726, 3.17241379307798, 4.83333333333333, 9.29411764712247, 12.7058823530282, 4.24999999987631, 6.99999999994907, 9.97183098578469, 2.39999999997206, 8.93023255818789, 15.3846153848909, 94, 0.111111111111111, 21.4000000004983, 29.9130434779581, 1.24137931033486, NA, 15.8666666666667, 7.17647058828444, 1.49999999998909, 37.9047619047619, 27.6666666666667, 1.74999999998727, 9.37499999993179, 17.3333333333333, 11.603053435032, 5.33333333333333, 2.8, 7.99999999994179, 3.5, 1.60000000003725, 7.31034482752751, 6.42857142846452, 56.7272727278731, 0, 21.6000000005029, 28.8750000004202, 1.6, NA, 4.5, 5.64705882356808, 7.16666666666667, 36.2068965514334, 40.235294117096, 4.8, 22.3043478260305, 8.86956521730152, 3.94936708861923, 3.33333333333333, 12.6000000002934, 20.0000000001663, 1.28571428572498, 0.749999999978172, NA, 6.25000000009095, NA, 0.258064516125156, 18.6666666666667, 17, 5.51724137926605, 2.58823529413537, 11.0769230771215, 5.26315789480134, 11.4999999996653, 34.1250000004966, 42.4, 6.53333333333333, 33.1578947366389, 4.4, 4.9484536082593, 11.2307692309704, 5.11111111111111, 23.8571428573412, 0.4, 2.30769230773364, 6.81818181819986, 8.19999999990454, 26.7272727275556, 0.352941176465754, 24.1999999997183, 7.04000000006557, 2.5, 7.14285714291654, 11.4285714286665, 12.1333333333333, 2.83870967744068, 42.7500000006221, 4.99999999985448, 3.33333333333333, 10.112359550456, 16.8, 4.23841059603303, 2.22222222222222, 14.4615384617975, 15.6923076925887, 3.23076923082709, 1.05882352939726, NA, 7.42857142844789, NA, NA, 16.952380952381, 12.4, 6.29999999992666, 85.4193548393512, 4.33333333333333, 11.8666666666667, 6.0000000000635, 19.6800000001833, NA, 3.46666666666667, NA, 13.0909090909091, 12.6315789471169, 5.14285714289991, 9.14285714285714, 12.1428571429581, 2.87499999997908, 1.692307692338, 10.2499999997017, 5.00000000007276, NA, NA, 19.578947368661, 10.4444444444444, 1.74999999998727, 4.77419354842295, 8.57142857149985, 9.66666666666667, 13.5238095238095, 7.29729729727434, NA, 1.6, 9.18367346930048, 6.85714285719988, 4.5508982036055, 0.666666666666667, 10.90909090886, 2.61538461536119, 6.1818181818836, 1.57142857140244, NA, 1.99999999996674, 24.4285714287746, 0.941176470575345, 16.6, 17.6666666666667, 0.999999999992724, 10.2666666666667, 7.5, 11.2499999999181, 11.9999999998785, 12.8, 29.7333333333333, 5.33333333333333, 13.6, 1.84615384615385, 12.7924528302168, 2.4, 23.6923076920955, 2.42857142859162, 4.90909090914286, 3.62499999997362, 11.4193548385381, 4.92307692303284, 17, NA, 16.9090909090909, 20.8333333333333, 0.96969696969697, 8, 11.8333333333333, 10.2352941175069, 5.81818181805867, 6.07228915660947, 39.3333333333333, 4.13333333333333, 9.6969696969697, 11.2, 7.94297352346302, 2.12499999998454, 4.66666666666667, 2.66666666666667, 11.3333333333333, 3.7037037037037, NA, 2.87500000004184, 24.3999999997159, 1.88888888888889, 10.4444444444444, NA, 3.73333333333333, 7.08571428566715, 15.8333333333333, 11.2499999999181, 2.59999999996973, NA, 43.6, 3.24999999997635, 22.9213483149066, NA, 5.22935779808415, 1.85714285711197, 14.3333333333333, 15.4285714286997, 4.363636363544, 1.8571428571583, 7.36363636365585, 6.37499999995362, 51.3333333333333, 3.42857142854862, 1.043478260859, 4.94736842102232, 2.76923076920597, 5.09090909090909, 2.5, 7.49999999994543, 9.71428571436649, 7.25581395352766, 29.8823529407672, 6.62500000009641, NA, 6.12500000008913, 5.59322033900236, 5.12499999996271, 5.45454545460318, 7.00000000005821, 2.44444444444444, 3.05882352936987, 16.9999999998021, 7.71428571434986, 16.8571428568625, NA, 8.83333333333333, 6.77777777777778, 2.78787878787879, 5.06666666666667, 8.83333333333333, 9.17647058829813, 14.1666666666667, 5.5, 36.6666666666667, 4.23529411767606, 7.48387096779814, 5.33333333333333, 2.73244781783923, 2.13333333333333, 2.5, 11.5, 6.42857142862488, 3, 1.79310344827586, 8.00000000006652, 24.8571428567295, NA, 6.09523809523809, 68.5517241373807, 21.2500000003092, 6.21052631575142, 19.2857142858747, 15.1111111111111, 5.5714285714749, 42.6506024095189, 42.615384615003, 4.87499999996453, 13.3333333333333, 11.8709677420246, 8.83116883122224, 6.31578947364551, 9.83333333333333, 1.99999999996674, 7.69230769223881, 4.39999999994878, 17.3076923070723, 8.13333333333333, 16.461538461391, 1.65517241377981, 7.03999999986887, 10.2857142855432, 2.12500000003092, 1.14285714283814, 1.14285714286665, 13.1764705880548, 3.7826086956426, NA, 28.1333333333333, 3.75000000005457, 8.38709677406756, 6.83870967731663, 3.20610687022758, 6.49999999995271, 6.32432432430443, 13.8666666666667, 8.42857142843125, 2.83333333333333, 13.4210526314967, 3.33333333333333, 14.1538461537194, 0.933333333333333, 15.8333333333333, NA, 8.2962962962963, 5.31818181819589, 13.5714285715414, 10.1249999999263, 6.28571428576655, 39.260869565118, 26.6000000006193, 4.00000000005821, NA, 3.74193548389907, 5.35104364326849, 0.749999999994543, 12.0000000001118, 4.30769230765373, 6.57142857148322, 6.00000000002686, 13.3333333333333, 5.33333333333333, 16.1999999998114, 1.87499999998636, 13.1200000001222, 11.0588235294875, 2.0689655172746, 5.57142857140541, 17.1428571429997, 12.8571428572498, 10.4615384617258, 27.2727272730159, 25.5714285716412, 9.25000000013461, 12.3956043957313, 20.8235294114795, 4.54183266930586, 6.25000000009095, 14.000000000326, 1.33333333333333, 8.13333333333333, 7.15789473666668, NA, 62.6666666666667, 18.0000000003224, 0.117647058821918, 6.66666666666667, 43.8571428575075, 8.55172413806835, 5.40540540543942, 7.71428571434986, 11.0000000001601, 18.2857142858663, 52.6451612895318, 26.4, 5.6, 13.1612903226795, 5.93939393939394, 2.48366013073029, 1.53846153844776, 2.36363636363636, 4.14285714289159, 1.33333333333333, 9.23076923093455, NA, 2.83333333333333, 10.9230769229791, 2.19354838706382, 18.6666666666667, 3.57142857136918, 1.6, 8.50000000012369, 9.85714285722482, 11.2500000001637, 1.74999999994907, 6.367346938715, 33, 10.8749999999209, 23.9999999999393, 23.4838709679183, 3.73205741626378, 2.74999999997999, 20.6666666666667, 4.14814814814815, 13.2857142858248, 4.57142857142857, 15.2432432431953, 5.85714285719156, 10, 2.5882352940822, 20.5000000002983, 58.3749999995753, 1.875, 5.08108108101713, 13.5714285715414, 10.8235294116165, 2.66666666666667, 27.4782608692871, 30.9230769228, 17.6, 7.77272727274784, 15.7500000002292, 2.46753246754739, 2.77777777777778, 12.6428571428046, 3.6, 11.2222222222222, 6.79999999992084, 20.705882353083, 2.85714285716662, 14.1818181819683, 3.51515151515152, 11.7777777777778, 57.8888888888889, 3.9999999999709, 5.58620689660779, 15.4285714286997, 11.3548387097627, 1.00000000000832, 23.9999999999393, 25.3333333333333, 20.1250000002929, 4.88372093023256, 13.1111111111111, 2.57812500003752, 2.66666666666667, 12.0000000002794, 7.74999999994361, 23.2857142859079, 10.3333333333333, NA, 4.74999999996544, 12.545454545189, 1.74999999998727, 8, 55.999999999233, 2.12499999998454, 5.05882352944641, 24.5714285716329, 8.21052631573917, 1.99999999998545, 29.17322834643, 30.5060240963)
par(mfrow = c(2, 2))
hist(nph)
hist(dph)
qqnorm(nph)
qqline(nph)
qqnorm(dph)
qqline(dph)

Ce sont les distributions:

entrez la description de l'image ici

Comme les données ne sont évidemment pas distribuées normalement, de nombreux tests statistiques ne peuvent pas être appliqués à ces données. Mais peut-être que je peux transformer les données en une distribution normale?

Comment savoir de quelle distribution il s'agit?
Et comment puis-je transférer les données vers une distribution normale?

Le but est de faire une analyse de la variance (MANOVA) ou d'une telle analyse (les données présentées ici sont les deux variables dépendantes).

Réponses:


9

Les données semblent avoir une distribution exponentielle . Pour la transformation, un simple journal semble fonctionner correctement.

hist(log(dph), freq=FALSE, ylim=c(0, .4))
lines(seq(-6, 6, by=0.01), dnorm(seq(-6, 6, by=0.01), 2, 1), col="red")
qqnorm(log(dph), ylim=c(0, 5))
qqline(log(dph), col="red")

entrez la description de l'image ici


Merci, @Tim. Pourriez-vous publier votre code? L'intrigue QQ semble différente quand je le fais (moins raide). De plus, avez-vous exclu la seule valeur qui est -Inf après la transformation?

1
@what Désolé pour cela, dans la version initiale, j'ai utilisé des paramètres étranges xlimet ylim. Et non - rien n'a été exclu.
Tim

À la recherche d'instructions sur la façon d' interpréter les résultats des tests d'hypothèses sur les données transformées logarithmiquement, je suis tombé sur un commentaire de whuber (d'abord sous cette question: stats.stackexchange.com/q/20397/14650 ) disant qu'une distribution de Poisson est "naturellement indiquée pour compter les données ", et de là a trouvé cet article expliquant pourquoi: r-bloggers.com/do-not-log-transform-count-data-bitches Que pensez-vous?

1
Parfois, vous voulez ou devez transformer vos variables - ce n'est certainement pas la seule, ou pas l'approche des paris toujours. Généralement oui, il existe des distributions qui sont conçues pour des données de comptage (par exemple Poisson) ou pour des distributions asymétriques (par exemple Géométrique, Exponentielle), mais il n'est pas toujours possible de les utiliser. Par exemple, vous pouvez utiliser une variable comme variable indépendante dans la régression linéaire, vous ne voulez donc pas qu'elle soit asymétrique et vous la transformez. Cela dépend généralement de la situation.
Tim

1
@what Oui, je suis d'accord que vous devez penser dans le processus d'origine de vos données (~ type variable). N'oubliez pas que la distribution est une HYPOTHÈSE que vous êtes prêt à faire, qui dicte la validité de votre modèle et de vos résultats. Pensez à un conditionnel: les résultats sont tels et tels SI (ou donnés), cette hypothèse (et d'autres) est vraie. Les tests sur l'échantillon réel aident généralement à tester cette hypothèse, mais ils ne le rendent pas VRAI ou FAUX. Et c'est pourquoi assumer quelque chose de crédible pour votre variable est si important :)
FairMiles

14

Toute distribution continue peut être transformée en une distribution normale grâce à un processus appelé gaussianisation (Chen et Gopinath, 2001) . Pour les distributions univariées, la gaussianisation est simple. Si une variable aléatoire a une fonction de distribution cumulative (CDF) et est le CDF d'une normale standard, alorsYFYΦ

X=Φ1(FY(Y))

aura une distribution normale standard. Ceci est facile à voir, car le CDF de estX

FX(x)=P(Xx)=P(Φ1(FY(Y))x)=P(YFY1(Φ(x)))=FY(FY1(Φ(x)))=Φ(x).

Si est distribué de façon exponentielle avec rate , alors les données pourraient être transformées viaYλ

X=Φ1(1eλY),

qui ressemble à un logarithme:

Fonction de gaussianisation

Je n'utilise pas R , mais je suis sûr que vous pouvez trouver des implémentations du CDF inverse (également connu sous le nom de fonction quantile ) de la normale, .Φ1


3
Vous m'avez perdu à "C'est facile à voir ..." :-) Je comprends y = 3x, mais je ne comprends pas F(x) = 3x. Je l'ai depuis des années à l'école et je l'entends à l'université tous les jours, mais la «fonction de x» n'a absolument aucun sens pour moi. Je ne vois pas à quoi cela correspond dans le monde dans lequel je vis et que j'expérimente à travers mes sens. Je ne comprends donc pas ce que vous dites que je pourrais faire dans "les données pourraient être transformées via ...". Mais +1 pour votre gentillesse en essayant de m'aider. Ce n'est pas de ta faute, je ne peux pas penser de façon abstraite.

-2
  1. Comment savoir de quelle distribution il s'agit? Ici, vous pouvez utiliser certains tests statistiques du package R fitdistrplus. Dans le package, vous trouverez des cratères adaptées, c'est-à-dire AIC, BIC, etc. Voici les méthodes.

    • ESTIMATION DE VRAISEMBLANCE MAXIMALE
    • ESTIMATION DE L'APPARIEMENT DES MOMENTS
    • ESTIMATION DE CORRESPONDANCE QUANTILE
    • ESTIMATION MAXIMALE DE LA BONNE ADAPTATION (Statistiques de qualité de l'ajustement et critères de qualité de l'ajustement)

Enfin, vous trouverez parmi plusieurs modèles théoriques le meilleur qui ressemble à vos données observées.

  1. Et comment puis-je transférer les données vers une distribution normale? Ici, vous pouvez utiliser Box Cox Transfom

    Box_Cox_tran=function(x, lambda, jacobian.adjusted = FALSE) 
    {
      bc1 <- function(x, lambda) 
      {
        if (any(x[!is.na(x)] <= 0)) 
          stop("First argument must be strictly positive.")
        z <- if (abs(lambda) <= 1e-06) 
          log(x)
        else ((x^lambda) - 1)/lambda
        if (jacobian.adjusted == TRUE) {
          z * (exp(mean(log(x), na.rm = TRUE)))^(1 - lambda)
        }
        else z
      }
      out <- x
      out <- if (is.matrix(out) | is.data.frame(out)) {
        if (is.null(colnames(out))) 
          colnames(out) <- paste("Z", 1:dim(out)[2], sep = "")
        for (j in 1:ncol(out)) {
          out[, j] <- bc1(out[, j], lambda[j])
        }
        colnames(out) <- paste(colnames(out), round(lambda, 2), 
                               sep = "^")
        out
      }
      else bc1(out, lambda)
      out
    }
    

Voici mon exmaple de travail:

# ---------------------------------------------------------------------------------------------------------------------------
# Objective three starts Here
# (3)= Bivariate modelling of annual maxima using traditional approach 
# a)    First transform onbserved seasonal maxima into normal distribution using Box-Cox Transformations(x to z)
# b)    Finaly, Estimate Pearson coefficient using traditional bivariate normal distribution
# ---------------------------------------------------------------------------------------------------------------------------
rm(list=ls())
Sys.setenv(LANGUAGE="en")  # to set languege from Polish to English
setwd("C:/Users/sdebele/Desktop/From_oldcomp/Old_Computer/Seasonal_APP/Data/Data_Winter&Summer")
# Loading the required package here
library(MASS)
library(geoR)
require(scales)
require(plyr)
require(car)
library(ggplot2)
require(alr3)
library(ggplot2)
library(reshape2)
library(nortest)
require(AID)
require(distr)
require(fBasics)
# -----------------------------------------------------------------------------------------------------------------------------
# Here the Box-Cox Transformations equations
# x(lambda)=x^lamda-1/lambda, if lambda is not zero
# else log(x) if lambda=0
#--------------------------------------------------------------------------------------------------------------------------------
# Here is the data for six guaging stations of dependant ( 51.12% to 89.85%)
filenames=c("ZAPALOW.txt","GORLICZYNA.txt","SARZYNA.txt","OSUCHY.txt","HARASIUKI.txt","RUDJASTKOWSKA.txt")
# ---------------------------------------------------------------------------------------------------------------------------
# (1)= For ZAPALOW hydrological guaging stations starts here
# --------------------------------------------------------------------------------------------------------------------------------
ZAPALOW=read.table(file=filenames[1],head=T,sep="\t")
newZAPALOW <- na.omit(ZAPALOW) # to eliminte the missing value from the data sets 
Years=newZAPALOW$Year
    Winter=newZAPALOW$Winter
Summer=newZAPALOW$Sumer
    source("Box_Cox_Transfom.R") # R_script containing the tranformation equations 
    # estimation of lambda using AID R package 
    # boxcoxnc(Sumer, method="ac", lam=seq(-2,2,0.01), plotit=TRUE, rep=30, p.method="BY")
    # boxcoxnc(Winter, method="ac", lam=seq(-2,2,0.01), plotit=TRUE, rep=30, p.method="BY")
    Trans_Win=boxcoxnc(Winter)
    Trans_Sum=boxcoxnc(Summer)
    Winter_trans=Box_Cox_tran(Winter,Trans_Win$result[1,1],jacobian.adjusted=T)
Summer_trans=Box_Cox_tran(Summer,Trans_Sum$result[1,1],jacobian.adjusted=T)
    newZAPALOW[,4]=Winter_trans
    newZAPALOW[,5]=Summer_trans
    colnames(newZAPALOW)= c("Year","Winter " ,"Summer","Winter_Trans","Summer_Trans")
    par(mfrow=c(2,2))
    par("lwd"=2)
    ## Plot histogram with overlayed normal distribution.
    hist(newZAPALOW[,4],main="",xlab="Discharge",freq=FALSE,col="lightblue")
    curve(dnorm(x,mean=mean(newZAPALOW[,4]),sd=sd(newZAPALOW[,4])), add=TRUE, col="darkred",lwd=2)
    qq.plot(newZAPALOW[,4], dist= "norm", col=palette()[1], ylab="Sample Quantiles",
            main="Normal Probability Plot", pch=19)
    #b <- mydata[,c(2,3)] # select interesting columns
    result <- shapiro.test(newZAPALOW[,4]) # checking for normality test 
    result$p.value
ad.test(newZAPALOW[,4]) # checking for normality test 
## Plot histogram with overlayed normal distribution.
hist(newZAPALOW[,5],main="",xlab="Discharge",freq=FALSE,col="lightblue")
curve(dnorm(x,mean=mean(newZAPALOW[,5]),sd=sd(newZAPALOW[,5])), add=TRUE, col="darkred",lwd=2)
qq.plot(newZAPALOW[,5], dist= "norm", col=palette()[1], ylab="Sample Quantiles",
        main="Normal Probability Plot", pch=19)
result <- shapiro.test(newZAPALOW[,5]) # checking for normality test 
result$p.value
ad.test(newZAPALOW[,5]) # checking for normality test 
write.table(newZAPALOW, "newZAPALOW_trans.txt", sep="\t")
For sure this will be helpfull for you.

Veuillez essayer de modifier votre message afin qu'il soit plus lisible. Votre code Box-Cox semble contenir des bogues (les boucles if-else ne sont pas correctement fermées, etc.), veuillez donc le corriger.
Tim

3
@Tim dans une liste, nous devons ajouter quatre autres espaces au début de chaque ligne pour la mettre en forme sous forme de code.
Shadow Wizard est Ear For You
En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.