Questions marquées «modeling»

Cette balise décrit le processus de création d'un modèle statistique ou d'apprentissage automatique. Ajoutez toujours une balise plus spécifique.

3
Conseils généraux sur la modélisation
La formulation d'un modèle mathématique pour un problème est l'un des aspects les plus subjectifs de la statistique, mais aussi l'un des plus importants. Quelles sont les meilleures références traitant de ce sujet crucial mais souvent négligé? Et quel célèbre statisticien a dit quelque chose dans le sens de: "Que …


2
Les poids et le décalage peuvent-ils conduire à des résultats similaires dans la régression du poisson?
Dans le "Guide du praticien des modèles linéaires généralisés" au paragraphe 1.83, il est indiqué que: "Dans le cas particulier d'un GLM multiplicatif de Poisson, il peut être démontré que la modélisation des comptes de sinistres avec un terme de décalage égal au log de l'exposition a produit des résultats …

3
Comment effectuer une SVD pour imputer des valeurs manquantes, un exemple concret
J'ai lu les excellents commentaires sur la façon de traiter les valeurs manquantes avant d'appliquer SVD, mais j'aimerais savoir comment cela fonctionne avec un exemple simple: Movie1 Movie2 Movie3 User1 5 4 User2 2 5 5 User3 3 4 User4 1 5 User5 5 1 5 Étant donné la matrice …
8 r  missing-data  data-imputation  svd  sampling  matlab  mcmc  importance-sampling  predictive-models  prediction  algorithms  graphical-model  graph-theory  r  regression  regression-coefficients  r-squared  r  regression  modeling  confounding  residuals  fitting  glmm  zero-inflation  overdispersion  optimization  curve-fitting  regression  time-series  order-statistics  bayesian  prior  uninformative-prior  probability  discrete-data  kolmogorov-smirnov  r  data-visualization  histogram  dimensionality-reduction  classification  clustering  accuracy  semi-supervised  labeling  state-space-models  t-test  biostatistics  paired-comparisons  paired-data  bioinformatics  regression  logistic  multiple-regression  mixed-model  random-effects-model  neural-networks  error-propagation  numerical-integration  time-series  missing-data  data-imputation  probability  self-study  combinatorics  survival  cox-model  statistical-significance  wilcoxon-mann-whitney  hypothesis-testing  distributions  normal-distribution  variance  t-distribution  probability  simulation  random-walk  diffusion  hypothesis-testing  z-test  hypothesis-testing  data-transformation  lognormal  r  regression  agreement-statistics  classification  svm  mixed-model  non-independent  observational-study  goodness-of-fit  residuals  confirmatory-factor  neural-networks  deep-learning 

3
L'indépendance statistique dans le monde réel
J'ai lu l'article suivant sur l'indépendance statistique . En résumé, l'article soutient que "Il est temps que la science retire la fiction de l'indépendance statistique" et poursuit en expliquant différentes raisons. Après avoir lu l'article, j'ai tendance à être d'accord. Je voulais savoir ce qui suit: Que pensent les autres …

1
Plusieurs modèles ARIMA correspondent bien aux données. Comment déterminer la commande? Approche correcte?
J'ai deux séries chronologiques (paramètres d'un modèle pour hommes et femmes) et vise à identifier un modèle ARIMA approprié afin de faire des prévisions. Ma série chronologique ressemble à: L'intrigue et l'ACF montrent non stationnaire (les pointes de l'ACF se coupent très lentement). Ainsi, j'utilise la différenciation et j'obtiens: Ce …

3
Trouvez la distribution et passez à la distribution normale
J'ai des données qui décrivent la fréquence à laquelle un événement se produit pendant une heure ("nombre par heure", nph) et la durée des événements ("durée en secondes par heure", dph). Ce sont les données d'origine: nph <- c(2.50000000003638, 3.78947368414551, 1.51456310682008, 5.84686774940732, 4.58823529414907, 5.59999999993481, 5.06666666666667, 11.6470588233699, 1.99999999998209, NA, 4.46153846149851, 18, …
8 normal-distribution  data-transformation  logistic  generalized-linear-model  ridge-regression  t-test  wilcoxon-signed-rank  paired-data  naive-bayes  distributions  logistic  goodness-of-fit  time-series  eviews  ecm  panel-data  reliability  psychometrics  validity  cronbachs-alpha  self-study  random-variable  expected-value  median  regression  self-study  multiple-regression  linear-model  forecasting  prediction-interval  normal-distribution  excel  bayesian  multivariate-analysis  modeling  predictive-models  canonical-correlation  rbm  time-series  machine-learning  neural-networks  fishers-exact  factorisation-theorem  svm  prediction  linear  reinforcement-learning  cdf  probability-inequalities  ecdf  time-series  kalman-filter  state-space-models  dynamic-regression  index-decomposition  sampling  stratification  cluster-sample  survey-sampling  distributions  maximum-likelihood  gamma-distribution 

2
Une personne sélectionne à plusieurs reprises les deux éléments les plus similaires sur trois. Comment modéliser / estimer une distance perceptuelle entre les objets?
Une personne reçoit trois articles, par exemple des images de visages, et est invitée à choisir quels sont les deux visages les plus similaires. Cette opération est répétée un grand nombre de fois avec différentes combinaisons de visages, chaque visage pouvant apparaître dans de nombreuses combinaisons. Compte tenu de ce …

1
Modèles d'état caché vs modèles sans état pour la régression des séries chronologiques
C'est une question assez générique: supposons que je veuille construire un modèle pour prédire la prochaine observation sur la base des observations précédentes ( peut être un paramètre à optimiser expérimentalement). Nous avons donc essentiellement une fenêtre coulissante d'entités d'entrée pour prédire la prochaine observation.NNNNNN Je peux utiliser une approche …

2
Pourquoi un modèle statistique serait-il surchargé s'il était doté d'un énorme ensemble de données?
Mon projet actuel peut m'obliger à construire un modèle pour prédire le comportement d'un certain groupe de personnes. l'ensemble de données de formation ne contient que 6 variables (id est uniquement à des fins d'identification): id, age, income, gender, job category, monthly spend dans laquelle se monthly spendtrouve la variable …
8 modeling  large-data  overfitting  clustering  algorithms  error  spatial  r  regression  predictive-models  linear-model  average  measurement-error  weighted-mean  error-propagation  python  standard-error  weighted-regression  hypothesis-testing  time-series  machine-learning  self-study  arima  regression  correlation  anova  statistical-significance  excel  r  regression  distributions  statistical-significance  contingency-tables  regression  optimization  measurement-error  loss-functions  image-processing  java  panel-data  probability  conditional-probability  r  lme4-nlme  model-comparison  time-series  probability  probability  conditional-probability  logistic  multiple-regression  model-selection  r  regression  model-based-clustering  svm  feature-selection  feature-construction  time-series  forecasting  stationarity  r  distributions  bootstrap  r  distributions  estimation  maximum-likelihood  garch  references  probability  conditional-probability  regression  logistic  regression-coefficients  model-comparison  confidence-interval  r  regression  r  generalized-linear-model  outliers  robust  regression  classification  categorical-data  r  association-rules  machine-learning  distributions  posterior  likelihood  r  hypothesis-testing  normality-assumption  missing-data  convergence  expectation-maximization  regression  self-study  categorical-data  regression  simulation  regression  self-study  self-study  gamma-distribution  modeling  microarray  synthetic-data 

3
Test post hoc dans une conception mixte 2x3 ANOVA utilisant SPSS?
J'ai deux groupes de 10 participants qui ont été évalués trois fois au cours d'une expérience. Pour tester les différences entre les groupes et entre les trois évaluations, j'ai exécuté une ANOVA de conception mixte 2x3 avec group(contrôle, expérimental), time(premier, deuxième, trois) et group x time. Les deux timeet grouprésulté …
8 anova  mixed-model  spss  post-hoc  bonferroni  time-series  unevenly-spaced-time-series  classification  normal-distribution  discriminant-analysis  probability  normal-distribution  estimation  sampling  classification  svm  terminology  pivot-table  random-generation  self-study  estimation  sampling  estimation  categorical-data  maximum-likelihood  excel  least-squares  instrumental-variables  2sls  total-least-squares  correlation  self-study  variance  unbiased-estimator  bayesian  mixed-model  ancova  statistical-significance  references  p-value  fishers-exact  probability  monte-carlo  particle-filter  logistic  predictive-models  modeling  interaction  survey  hypothesis-testing  multiple-regression  regression  variance  data-transformation  residuals  minitab  r  time-series  forecasting  arima  garch  correlation  estimation  least-squares  bias  pca  predictive-models  genetics  sem  partial-least-squares  nonparametric  ordinal-data  wilcoxon-mann-whitney  bonferroni  wilcoxon-signed-rank  traminer  regression  econometrics  standard-error  robust  misspecification  r  probability  logistic  generalized-linear-model  r-squared  effect-size  gee  ordered-logit  bayesian  classification  svm  kernel-trick  nonlinear  bayesian  pca  dimensionality-reduction  eigenvalues  probability  distributions  mathematical-statistics  estimation  nonparametric  kernel-smoothing  expected-value  filter  mse  time-series  correlation  data-visualization  clustering  estimation  predictive-models  recommender-system  sparse  hypothesis-testing  data-transformation  parametric  probability  summations  correlation  pearson-r  spearman-rho  bayesian  replicability  dimensionality-reduction  discriminant-analysis  outliers  weka 



4
Version flexible de la régression logistique
J'essaie d'adapter une régression logistique où il y a une énorme différence dans le nombre de points de données dans les deux groupes (70 Vs 10 000). Un de mes amis statisticien m'a dit que c'est un problème connu de régression logistique et que pour ces types de chiffres, il …

1
Que signifie ce flou autour de la ligne dans ce graphique?
Je jouais avec ggplot2 en utilisant les commandes suivantes pour ajuster une ligne à mes données: ggplot(data=datNorm, aes(x=Num, y=Val)) + geom_point() + stat_summary(fun.data = "mean_cl_boot", geom="errorbar", colour="red", width=0.8) + stat_sum_single(median) + stat_sum_single(mean, colour="blue") + geom_smooth(level = 0.95, aes(group=1), method="lm") Les points rouges sont des valeurs médianes, le bleu est la …

En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.