Questions marquées «multiple-regression»

Régression comprenant au moins deux variables indépendantes non constantes.

3
Trouvez la distribution et passez à la distribution normale
J'ai des données qui décrivent la fréquence à laquelle un événement se produit pendant une heure ("nombre par heure", nph) et la durée des événements ("durée en secondes par heure", dph). Ce sont les données d'origine: nph <- c(2.50000000003638, 3.78947368414551, 1.51456310682008, 5.84686774940732, 4.58823529414907, 5.59999999993481, 5.06666666666667, 11.6470588233699, 1.99999999998209, NA, 4.46153846149851, 18, …
8 normal-distribution  data-transformation  logistic  generalized-linear-model  ridge-regression  t-test  wilcoxon-signed-rank  paired-data  naive-bayes  distributions  logistic  goodness-of-fit  time-series  eviews  ecm  panel-data  reliability  psychometrics  validity  cronbachs-alpha  self-study  random-variable  expected-value  median  regression  self-study  multiple-regression  linear-model  forecasting  prediction-interval  normal-distribution  excel  bayesian  multivariate-analysis  modeling  predictive-models  canonical-correlation  rbm  time-series  machine-learning  neural-networks  fishers-exact  factorisation-theorem  svm  prediction  linear  reinforcement-learning  cdf  probability-inequalities  ecdf  time-series  kalman-filter  state-space-models  dynamic-regression  index-decomposition  sampling  stratification  cluster-sample  survey-sampling  distributions  maximum-likelihood  gamma-distribution 


2
Pourquoi un modèle statistique serait-il surchargé s'il était doté d'un énorme ensemble de données?
Mon projet actuel peut m'obliger à construire un modèle pour prédire le comportement d'un certain groupe de personnes. l'ensemble de données de formation ne contient que 6 variables (id est uniquement à des fins d'identification): id, age, income, gender, job category, monthly spend dans laquelle se monthly spendtrouve la variable …
8 modeling  large-data  overfitting  clustering  algorithms  error  spatial  r  regression  predictive-models  linear-model  average  measurement-error  weighted-mean  error-propagation  python  standard-error  weighted-regression  hypothesis-testing  time-series  machine-learning  self-study  arima  regression  correlation  anova  statistical-significance  excel  r  regression  distributions  statistical-significance  contingency-tables  regression  optimization  measurement-error  loss-functions  image-processing  java  panel-data  probability  conditional-probability  r  lme4-nlme  model-comparison  time-series  probability  probability  conditional-probability  logistic  multiple-regression  model-selection  r  regression  model-based-clustering  svm  feature-selection  feature-construction  time-series  forecasting  stationarity  r  distributions  bootstrap  r  distributions  estimation  maximum-likelihood  garch  references  probability  conditional-probability  regression  logistic  regression-coefficients  model-comparison  confidence-interval  r  regression  r  generalized-linear-model  outliers  robust  regression  classification  categorical-data  r  association-rules  machine-learning  distributions  posterior  likelihood  r  hypothesis-testing  normality-assumption  missing-data  convergence  expectation-maximization  regression  self-study  categorical-data  regression  simulation  regression  self-study  self-study  gamma-distribution  modeling  microarray  synthetic-data 

4
Régression des données incluant une date
J'ai un ensemble de données qui contient quelques centaines de transactions provenant de trois fournisseurs opérant dans plus de 100 pays sur une période de trois ans. Nous avons constaté que le pays de vente n'est pas un facteur significatif dans les prix atteints (les produits sont des produits plus …

1
Si vous exécutez une régression OLS sur des données transversales, devez-vous tester l'autocorrélation dans les résidus?
J'ai un ensemble d'observations, indépendant du temps. Je me demande si je dois exécuter des tests d'autocorrélation? Il me semble que cela n'a aucun sens, car il n'y a pas de composante temporelle dans mes données. Cependant, j'ai en fait essayé le test LM de corrélation en série, et cela …

1
Codage fictif des contrastes: 0,1 vs 1, -1
Je cherche votre aide pour comprendre la différence entre deux contrastes différents pour les variables dichotomiques. Sur cette page: http://www.psychstat.missouristate.edu/multibook/mlt08.htm sous "Variables des prédicteurs dichotomiques", il existe deux façons de coder les prédicteurs dichotomiques: en utilisant le contraste 0,1 ou le contraste 1, -1 . Je comprends en quelque sorte …

3
Test post hoc dans une conception mixte 2x3 ANOVA utilisant SPSS?
J'ai deux groupes de 10 participants qui ont été évalués trois fois au cours d'une expérience. Pour tester les différences entre les groupes et entre les trois évaluations, j'ai exécuté une ANOVA de conception mixte 2x3 avec group(contrôle, expérimental), time(premier, deuxième, trois) et group x time. Les deux timeet grouprésulté …
8 anova  mixed-model  spss  post-hoc  bonferroni  time-series  unevenly-spaced-time-series  classification  normal-distribution  discriminant-analysis  probability  normal-distribution  estimation  sampling  classification  svm  terminology  pivot-table  random-generation  self-study  estimation  sampling  estimation  categorical-data  maximum-likelihood  excel  least-squares  instrumental-variables  2sls  total-least-squares  correlation  self-study  variance  unbiased-estimator  bayesian  mixed-model  ancova  statistical-significance  references  p-value  fishers-exact  probability  monte-carlo  particle-filter  logistic  predictive-models  modeling  interaction  survey  hypothesis-testing  multiple-regression  regression  variance  data-transformation  residuals  minitab  r  time-series  forecasting  arima  garch  correlation  estimation  least-squares  bias  pca  predictive-models  genetics  sem  partial-least-squares  nonparametric  ordinal-data  wilcoxon-mann-whitney  bonferroni  wilcoxon-signed-rank  traminer  regression  econometrics  standard-error  robust  misspecification  r  probability  logistic  generalized-linear-model  r-squared  effect-size  gee  ordered-logit  bayesian  classification  svm  kernel-trick  nonlinear  bayesian  pca  dimensionality-reduction  eigenvalues  probability  distributions  mathematical-statistics  estimation  nonparametric  kernel-smoothing  expected-value  filter  mse  time-series  correlation  data-visualization  clustering  estimation  predictive-models  recommender-system  sparse  hypothesis-testing  data-transformation  parametric  probability  summations  correlation  pearson-r  spearman-rho  bayesian  replicability  dimensionality-reduction  discriminant-analysis  outliers  weka 


1
Intervalles de confiance lors de l'utilisation du théorème de Bayes
Je calcule des probabilités conditionnelles et des intervalles de confiance à 95% associés. Pour bon nombre de mes cas, j'ai un décompte simple des xsuccès des nessais (à partir d'un tableau de contingence), donc je peux utiliser un intervalle de confiance binomial, tel que celui fourni par binom.confint(x, n, method='exact')dans …


3
Interpréter le coefficient dans un modèle de régression linéaire avec des variables catégorielles
Je vais donner mes exemples avec les appels R. D'abord un exemple simple de régression linéaire avec une variable dépendante «durée de vie» et deux variables explicatives continues. data.frame(height=runif(4000,160,200))->human.life human.life$weight=runif(4000,50,120) human.life$lifespan=sample(45:90,4000,replace=TRUE) summary(lm(lifespan~1+height+weight,data=human.life)) Call: lm(formula = lifespan ~ 1 + height + weight, data = human.life) Residuals: Min 1Q Median 3Q …

4
Que dois-je savoir lorsque j'utilise la régression multiple pour trouver des relations «causales» dans mes données?
Tout d'abord, je réalise que la régression multiple ne donne pas vraiment d'inférence "causale" sur les données. Permettez-moi d'expliquer mon cas actuel: J'ai quatre variables indépendantes qui j'espère (mais je ne suis pas sûr) sont impliquées dans la conduite de la chose que je mesure. J'ai voulu utiliser la régression …
En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.