Questions marquées «expected-value»

La valeur attendue d'une variable aléatoire est une moyenne pondérée de toutes les valeurs possibles qu'une variable aléatoire peut prendre, avec des poids égaux à la probabilité de prendre cette valeur.


2
Attente de la racine carrée de la somme des variables aléatoires uniformes carrées indépendantes
Soit X1,…,Xn∼U(0,1)X1,…,Xn∼U(0,1)X_1,\dots,X_n \sim U(0,1) des variables aléatoires uniformes standard indépendantes et distribuées de manière identique. Let Yn=∑inX2iI seek: E[Yn−−√]Let Yn=∑inXi2I seek: E[Yn]\text{Let }\quad Y_n=\sum_i^nX_i^2 \quad \quad \text{I seek: } \quad \mathbb{E}\big[\sqrt{Y_n } \big] L'attente de YnYnY_n est simple: E[X2]E[Yn]=∫10y2y√=13=E[∑inX2i]=∑inE[X2i]=n3E[X2]=∫01y2y=13E[Yn]=E[∑inXi2]=∑inE[Xi2]=n3\begin{align} \mathbb{E}\left[X^2\right] &=\int_0^1\frac{y}{2\sqrt{y}}=\frac{1}{3}\\ \mathbb{E}\left[Y_n\right] &=\mathbb{E}\left[\sum_i^nX_i^2\right] = \sum_i^n\mathbb{E}\left[X_i^2\right]=\frac{n}{3} \end{align} Maintenant pour la partie …



1
Comment répartir de manière optimale les tirages lors du calcul de plusieurs attentes
Supposons que nous voulons calculer une certaine attente: EYEX|Y[f(X, Y) ]EOuiEX|Oui[F(X,Oui)]E_YE_{X|Y}[f(X,Y)] Supposons que nous voulions l'approcher en utilisant la simulation de Monte Carlo. EOuiEX| Oui[ f( X, Y) ] ≈ 1R S∑r = 1R∑s = 1SF( xr , s, yr)EOuiEX|Oui[F(X,Oui)]≈1RS∑r=1R∑s=1SF(Xr,s,yr)E_YE_{X|Y}[f(X,Y)] \approx \frac1{RS}\sum_{r=1}^R\sum_{s=1}^Sf(x^{r,s},y^r) Mais supposons qu'il est coûteux de prélever des …






2

4
Comment la valeur attendue est-elle liée à la moyenne, la médiane, etc. dans une distribution non normale?
Comment la valeur attendue d'une variable aléatoire continue est-elle liée à sa moyenne arithmétique, sa médiane, etc. dans une distribution non normale (par exemple, skew-normal)? Je suis intéressé par toutes les distributions communes / intéressantes (par exemple, les distributions log-normales, simples bi / multimodales, tout ce qui est bizarre et …

2
Calculer la courbe ROC pour les données
Donc, j'ai 16 essais dans lesquels j'essaie d'authentifier une personne à partir d'un trait biométrique en utilisant Hamming Distance. Mon seuil est fixé à 3,5. Mes données sont ci-dessous et seul l'essai 1 est un vrai positif: Trial Hamming Distance 1 0.34 2 0.37 3 0.34 4 0.29 5 0.55 …
9 mathematical-statistics  roc  classification  cross-validation  pac-learning  r  anova  survival  hazard  machine-learning  data-mining  hypothesis-testing  regression  random-variable  non-independent  normal-distribution  approximation  central-limit-theorem  interpolation  splines  distributions  kernel-smoothing  r  data-visualization  ggplot2  distributions  binomial  random-variable  poisson-distribution  simulation  kalman-filter  regression  lasso  regularization  lme4-nlme  model-selection  aic  r  mcmc  dlm  particle-filter  r  panel-data  multilevel-analysis  model-selection  entropy  graphical-model  r  distributions  quantiles  qq-plot  svm  matlab  regression  lasso  regularization  entropy  inference  r  distributions  dataset  algorithms  matrix-decomposition  regression  modeling  interaction  regularization  expected-value  exponential  gamma-distribution  mcmc  gibbs  probability  self-study  normality-assumption  naive-bayes  bayes-optimal-classifier  standard-deviation  classification  optimization  control-chart  engineering-statistics  regression  lasso  regularization  regression  references  lasso  regularization  elastic-net  r  distributions  aggregation  clustering  algorithms  regression  correlation  modeling  distributions  time-series  standard-deviation  goodness-of-fit  hypothesis-testing  statistical-significance  sample  binary-data  estimation  random-variable  interpolation  distributions  probability  chi-squared  predictor  outliers  regression  modeling  interaction 

3
Quel est le problème avec ma preuve de la loi de la variance totale?
Selon la loi de la variance totale, Var( X) = E( Var( X∣ Y) ) + Var( E( X∣ Y) )Var⁡(X)=E⁡(Var⁡(X∣Y))+Var⁡(E⁡(X∣Y))\operatorname{Var}(X)=\operatorname{E}(\operatorname{Var}(X\mid Y)) + \operatorname{Var}(\operatorname{E}(X\mid Y)) En essayant de le prouver, j'écris Var( X)= E( X- EX)2= E{ E[ ( X- EX)2∣ Y] }= E( Var( X∣ Y) )Var⁡(X)=E⁡(X−E⁡X)2=E⁡{E⁡[(X−E⁡X)2∣Y]}=E⁡(Var⁡(X∣Y)) \begin{equation} \begin{aligned} …

1
Comment prouver si la moyenne d'une fonction de densité de probabilité existe
Il est bien connu qu’étant donné une variable aléatoire de valeur réelle XXX avec pdf FFf, la moyenne de XXX (s'il existe) est trouvé par E [X] =∫RXF( x )d x.E[X]=∫RXF(X)réX.\begin{equation} \mathbb{E}[X]=\int_{\mathbb{R}}x\,f(x)\,\mathrm{d}x\,. \end{equation} Question générale: maintenant, si l'on ne peut pas résoudre l'intégrale ci-dessus sous forme fermée, mais veut simplement …

En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.