Questions marquées «glmm»

Les modèles linéaires mixtes généralisés (effets) sont généralement utilisés pour modéliser des données non normales non indépendantes (par exemple, des données binaires longitudinales).

1
Comment gérez-vous les variables «imbriquées» dans un modèle de régression?
Considérons un problème statistique où vous avez une responsevariable que vous souhaitez décrire conditionnellement à une explanatoryvariable et une nestedvariable, où la variable imbriquée n'apparaît que comme une variable significative pour des valeurs particulières de la variable explicative . Dans les cas où la variable explicative n'admet pas de variable …

3
Comment obtenir l'intervalle de confiance sur le changement du carré de la population
Pour un exemple simple, supposons qu'il existe deux modèles de régression linéaire Modèle 1 a trois prédicteurs, x1a, x2betx2c Le modèle 2 a trois prédicteurs du modèle 1 et deux prédicteurs supplémentaires x2aetx2b Il existe une équation de régression de la population où la variance de la population expliquée est …

1
Comment intégrer une valeur aberrante innovante à l'observation 48 dans mon modèle ARIMA?
Je travaille sur un ensemble de données. Après avoir utilisé certaines techniques d'identification de modèle, je suis sorti avec un modèle ARIMA (0,2,1). J'ai utilisé la detectIOfonction dans le package TSAen R pour détecter une valeur aberrante innovante (IO) à la 48e observation de mon ensemble de données d'origine. Comment …
10 r  time-series  arima  outliers  hypergeometric  fishers-exact  r  time-series  intraclass-correlation  r  logistic  glmm  clogit  mixed-model  spss  repeated-measures  ancova  machine-learning  python  scikit-learn  distributions  data-transformation  stochastic-processes  web  standard-deviation  r  machine-learning  spatial  similarities  spatio-temporal  binomial  sparse  poisson-process  r  regression  nonparametric  r  regression  logistic  simulation  power-analysis  r  svm  random-forest  anova  repeated-measures  manova  regression  statistical-significance  cross-validation  group-differences  model-comparison  r  spatial  model-evaluation  parallel-computing  generalized-least-squares  r  stata  fitting  mixture  hypothesis-testing  categorical-data  hypothesis-testing  anova  statistical-significance  repeated-measures  likert  wilcoxon-mann-whitney  boxplot  statistical-significance  confidence-interval  forecasting  prediction-interval  regression  categorical-data  stata  least-squares  experiment-design  skewness  reliability  cronbachs-alpha  r  regression  splines  maximum-likelihood  modeling  likelihood-ratio  profile-likelihood  nested-models 

3
Effets fixes vs effets aléatoires
J'ai récemment commencé à apprendre les modèles mixtes linéaires généralisés et j'utilisais R pour explorer la différence que cela fait de traiter l'appartenance à un groupe comme un effet fixe ou aléatoire. En particulier, je regarde l'exemple de jeu de données discuté ici: http://www.ats.ucla.edu/stat/mult_pkg/glmm.htm http://www.ats.ucla.edu/stat/r/dae/melogit.htm Comme indiqué dans ce tutoriel, …

1
Pourquoi Anova () et drop1 () ont-ils fourni des réponses différentes pour les GLMM?
J'ai un GLMM du formulaire: lmer(present? ~ factor1 + factor2 + continuous + factor1*continuous + (1 | factor3), family=binomial) Lorsque j'utilise drop1(model, test="Chi"), j'obtiens des résultats différents de ceux que j'utilise à Anova(model, type="III")partir du package de voiture ou summary(model). Ces deux derniers donnent les mêmes réponses. En utilisant un …
10 r  anova  glmm  r  mixed-model  bootstrap  sample-size  cross-validation  roc  auc  sampling  stratification  random-allocation  logistic  stata  interpretation  proportion  r  regression  multiple-regression  linear-model  lm  r  cross-validation  cart  rpart  logistic  generalized-linear-model  econometrics  experiment-design  causality  instrumental-variables  random-allocation  predictive-models  data-mining  estimation  contingency-tables  epidemiology  standard-deviation  mean  ancova  psychology  statistical-significance  cross-validation  synthetic-data  poisson-distribution  negative-binomial  bioinformatics  sequence-analysis  distributions  binomial  classification  k-means  distance  unsupervised-learning  euclidean  correlation  chi-squared  spearman-rho  forecasting  excel  exponential-smoothing  binomial  sample-size  r  change-point  wilcoxon-signed-rank  ranks  clustering  matlab  covariance  covariance-matrix  normal-distribution  simulation  random-generation  bivariate  standardization  confounding  z-statistic  forecasting  arima  minitab  poisson-distribution  negative-binomial  poisson-regression  overdispersion  probability  self-study  markov-process  estimation  maximum-likelihood  classification  pca  group-differences  chi-squared  survival  missing-data  contingency-tables  anova  proportion 




1
Aide à l'interprétation des données de comptage GLMM à l'aide de lme4 glmer et glmer.nb - Binôme négatif contre Poisson
J'ai des questions concernant la spécification et l'interprétation des GLMM. 3 questions sont définitivement statistiques et 2 sont plus spécifiquement sur R. Je poste ici parce que finalement je pense que le problème est l'interprétation des résultats GLMM. J'essaie actuellement d'installer un GLMM. J'utilise les données du recensement américain de …

1
Dois-je exclure les effets aléatoires d'un modèle s'ils ne sont pas statistiquement significatifs?
Dois-je inclure des effets aléatoires dans un modèle même s'ils ne sont pas statistiquement significatifs? J'ai un plan expérimental de mesures répétées, dans lequel chaque individu expérimente trois traitements différents dans un ordre aléatoire. Je voudrais contrôler les effets de l'individu et de l'ordre, mais aucun ne semble statistiquement significatif …



1
Résolution de l'hétéroscédasticité dans le GLMM de Poisson
J'ai des données de collecte à long terme et j'aimerais tester si le nombre d'animaux collectés est influencé par les effets météorologiques. Mon modèle ressemble à ci-dessous: glmer(SumOfCatch ~ I(pc.act.1^2) +I(pc.act.2^2) + I(pc.may.1^2) + I(pc.may.2^2) + SampSize + as.factor(samp.prog) + (1|year/month), control=glmerControl(optimizer="bobyqa", optCtrl=list(maxfun=1e9,npt=5)), family="poisson", data=a2) Explication des variables utilisées: SumOfCatch: …

3
Comment effectuer une SVD pour imputer des valeurs manquantes, un exemple concret
J'ai lu les excellents commentaires sur la façon de traiter les valeurs manquantes avant d'appliquer SVD, mais j'aimerais savoir comment cela fonctionne avec un exemple simple: Movie1 Movie2 Movie3 User1 5 4 User2 2 5 5 User3 3 4 User4 1 5 User5 5 1 5 Étant donné la matrice …
8 r  missing-data  data-imputation  svd  sampling  matlab  mcmc  importance-sampling  predictive-models  prediction  algorithms  graphical-model  graph-theory  r  regression  regression-coefficients  r-squared  r  regression  modeling  confounding  residuals  fitting  glmm  zero-inflation  overdispersion  optimization  curve-fitting  regression  time-series  order-statistics  bayesian  prior  uninformative-prior  probability  discrete-data  kolmogorov-smirnov  r  data-visualization  histogram  dimensionality-reduction  classification  clustering  accuracy  semi-supervised  labeling  state-space-models  t-test  biostatistics  paired-comparisons  paired-data  bioinformatics  regression  logistic  multiple-regression  mixed-model  random-effects-model  neural-networks  error-propagation  numerical-integration  time-series  missing-data  data-imputation  probability  self-study  combinatorics  survival  cox-model  statistical-significance  wilcoxon-mann-whitney  hypothesis-testing  distributions  normal-distribution  variance  t-distribution  probability  simulation  random-walk  diffusion  hypothesis-testing  z-test  hypothesis-testing  data-transformation  lognormal  r  regression  agreement-statistics  classification  svm  mixed-model  non-independent  observational-study  goodness-of-fit  residuals  confirmatory-factor  neural-networks  deep-learning 

1
Probabilité et estimations des effets mixtes Régression logistique
Simulons d'abord quelques données pour une régression logistique avec des parties fixes et aléatoires: set.seed(1) n <- 100 x <- runif(n) z <- sample(c(0,1), n, replace=TRUE) b <- rnorm(2) beta <- c(0.4, 0.8) X <- model.matrix(~x) Z <- cbind(z, 1-z) eta <- X%*%beta + Z%*%b pr <- 1/(1+exp(-eta)) y <- …

En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.