Questions marquées «cox-model»

La régression des risques proportionnels de Cox est une méthode semi-paramétrique pour l'analyse de survie. Aucune forme de distribution ne doit être supposée, seulement que l'effet d'une augmentation d'une unité dans une covariable est un multiple constant.

4
Comment interpréter une courbe de survie du modèle de risque de Cox?
Comment interprétez-vous une courbe de survie à partir du modèle de risque proportionnel cox? Dans cet exemple de jouet, supposons que nous ayons un modèle de risque proportionnel cox sur agevariable dans les kidneydonnées et générons la courbe de survie. library(survival) fit <- coxph(Surv(time, status)~age, data=kidney) plot(conf.int="none", survfit(fit)) grid() Par …

1
Comment générer des données de survie avec des covariables dépendantes du temps en utilisant R
Je veux générer le temps de survie à partir d'un modèle de risques proportionnels de Cox qui contient une covariable dépendante du temps. Le modèle est h(t|Xi)=h0(t)exp(γXi+αmi(t))h(t|Xi)=h0(t)exp⁡(γXi+αmi(t))h(t|X_i) =h_0(t) \exp(\gamma X_i + \alpha m_{i}(t)) où est généré à partir de Binomial (1,0,5) et .m i ( t ) = β 0 …



1
Comment comparer les événements observés aux événements attendus?
Supposons que j'ai un échantillon de fréquences de 4 événements possibles: Event1 - 5 E2 - 1 E3 - 0 E4 - 12 et j'ai les probabilités attendues que mes événements se produisent: p1 - 0.2 p2 - 0.1 p3 - 0.1 p4 - 0.6 Avec la somme des fréquences …
9 r  statistical-significance  chi-squared  multivariate-analysis  exponential  joint-distribution  statistical-significance  self-study  standard-deviation  probability  normal-distribution  spss  interpretation  assumptions  cox-model  reporting  cox-model  statistical-significance  reliability  method-comparison  classification  boosting  ensemble  adaboost  confidence-interval  cross-validation  prediction  prediction-interval  regression  machine-learning  svm  regularization  regression  sampling  survey  probit  matlab  feature-selection  information-theory  mutual-information  time-series  forecasting  simulation  classification  boosting  ensemble  adaboost  normal-distribution  multivariate-analysis  covariance  gini  clustering  text-mining  distance-functions  information-retrieval  similarities  regression  logistic  stata  group-differences  r  anova  confidence-interval  repeated-measures  r  logistic  lme4-nlme  inference  fiducial  kalman-filter  classification  discriminant-analysis  linear-algebra  computing  statistical-significance  time-series  panel-data  missing-data  uncertainty  probability  multivariate-analysis  r  classification  spss  k-means  discriminant-analysis  poisson-distribution  average  r  random-forest  importance  probability  conditional-probability  distributions  standard-deviation  time-series  machine-learning  online  forecasting  r  pca  dataset  data-visualization  bayes  distributions  mathematical-statistics  degrees-of-freedom 

1
Modèle de risque proportionnel de Cox et interprétation des coefficients lorsqu'une interaction avec des cas plus élevés est impliquée
Voici le résumé-sortie du modèle de Coxph que j'ai utilisé (j'ai utilisé R et la sortie est basée sur le meilleur modèle final, c'est-à-dire que toutes les variables explicatives significatives et leurs interactions sont incluses): coxph(formula = Y ~ LT + Food + Temp2 + LT:Food + LT:Temp2 + Food:Temp2 …



1
Quelle est la différence entre les différents types de résidus dans l'analyse de survie (régression de Cox)?
Je suis relativement nouveau dans l'analyse de survie. On m'a conseillé de rechercher et d'apprendre les résidus de Schoenfeld dans le cadre d'un diagnostic de modèle pour voir si l'hypothèse de risque proportionnel était satisfaite. En recherchant ceci, j'ai vu des références à de nombreux types de résidus, notamment: Cox-Snell …



3
Comment effectuer une SVD pour imputer des valeurs manquantes, un exemple concret
J'ai lu les excellents commentaires sur la façon de traiter les valeurs manquantes avant d'appliquer SVD, mais j'aimerais savoir comment cela fonctionne avec un exemple simple: Movie1 Movie2 Movie3 User1 5 4 User2 2 5 5 User3 3 4 User4 1 5 User5 5 1 5 Étant donné la matrice …
8 r  missing-data  data-imputation  svd  sampling  matlab  mcmc  importance-sampling  predictive-models  prediction  algorithms  graphical-model  graph-theory  r  regression  regression-coefficients  r-squared  r  regression  modeling  confounding  residuals  fitting  glmm  zero-inflation  overdispersion  optimization  curve-fitting  regression  time-series  order-statistics  bayesian  prior  uninformative-prior  probability  discrete-data  kolmogorov-smirnov  r  data-visualization  histogram  dimensionality-reduction  classification  clustering  accuracy  semi-supervised  labeling  state-space-models  t-test  biostatistics  paired-comparisons  paired-data  bioinformatics  regression  logistic  multiple-regression  mixed-model  random-effects-model  neural-networks  error-propagation  numerical-integration  time-series  missing-data  data-imputation  probability  self-study  combinatorics  survival  cox-model  statistical-significance  wilcoxon-mann-whitney  hypothesis-testing  distributions  normal-distribution  variance  t-distribution  probability  simulation  random-walk  diffusion  hypothesis-testing  z-test  hypothesis-testing  data-transformation  lognormal  r  regression  agreement-statistics  classification  svm  mixed-model  non-independent  observational-study  goodness-of-fit  residuals  confirmatory-factor  neural-networks  deep-learning 



2
Régression de Cox à grande échelle avec R (Big Data)
J'essaie d'exécuter une régression de Cox sur un échantillon de données de 2 000 000 lignes comme suit en utilisant uniquement R. Il s'agit d'une traduction directe d'un PHREG dans SAS. L'échantillon est représentatif de la structure de l'ensemble de données d'origine. ## library(survival) ### Replace 100000 by 2,000,000 test …

En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.