Questions marquées «binomial»

La distribution binomiale donne les fréquences des "succès" dans un nombre fixe d '"essais" indépendants. Utilisez cette balise pour les questions sur les données qui pourraient être distribuées binomialement ou pour les questions sur la théorie de cette distribution.

4
Le résultat d'un examen est-il un binôme?
Voici une simple question de statistiques qui m'a été posée. Je ne suis pas vraiment sûr de le comprendre. X = le nombre de points acquis dans un examen (choix multiple et une bonne réponse est un point). Le binôme X est-il distribué? La réponse du professeur a été: Oui, …


2
Qu'est-ce que la distribution quasi-binomiale (dans le contexte du GLM)?
J'espère que quelqu'un pourra fournir un aperçu intuitif de ce qu'est la distribution quasi-binomiale et de ce qu'elle fait. Je suis particulièrement intéressé par ces points: En quoi le quasibinôme diffère de la distribution binomiale. Lorsque la variable de réponse est une proportion (les valeurs d'exemple incluent 0,23, 0,11, 0,78, …

1
Quand la fonction de distribution binomiale est-elle supérieure / inférieure à sa fonction de distribution de Poisson limite?
Soit B(n,p,r)B(n,p,r)B(n,p,r) la fonction de distribution binomiale (DF) avec les paramètres n∈Nn∈Nn \in \mathbb N et p∈(0,1)p∈(0,1)p \in (0,1) évalués à r∈{0,1,…,n}r∈{0,1,…,n}r \in \{0,1,\ldots,n\} : et soit dénotons le Poisson DF avec le paramètre évalué à r \ in \ {0,1,2, \ ldots \} : F(ν,r)a∈R+r∈{0,1,2,…}F(a,r)=e-ar ∑ i=0ajeB(n,p,r)=∑i=0r(ni)pi(1−p)n−i,B(n,p,r)=∑i=0r(ni)pi(1−p)n−i,\begin{equation} B(n,p,r) = …


1
Calcul de la répétabilité des effets d'un modèle lmer
Je viens de tomber sur cet article , qui décrit comment calculer la répétabilité (aka fiabilité, aka corrélation intraclasse) d'une mesure via la modélisation d'effets mixtes. Le code R serait: #fit the model fit = lmer(dv~(1|unit),data=my_data) #obtain the variance estimates vc = VarCorr(fit) residual_var = attr(vc,'sc')^2 intercept_var = attr(vc$id,'stddev')[1]^2 #compute …
28 mixed-model  reliability  intraclass-correlation  repeatability  spss  factor-analysis  survey  modeling  cross-validation  error  curve-fitting  mediation  correlation  clustering  sampling  machine-learning  probability  classification  metric  r  project-management  optimization  svm  python  dataset  quality-control  checking  clustering  distributions  anova  factor-analysis  exponential  poisson-distribution  generalized-linear-model  deviance  machine-learning  k-nearest-neighbour  r  hypothesis-testing  t-test  r  variance  levenes-test  bayesian  software  bayesian-network  regression  repeated-measures  least-squares  change-scores  variance  chi-squared  variance  nonlinear-regression  regression-coefficients  multiple-comparisons  p-value  r  statistical-significance  excel  sampling  sample  r  distributions  interpretation  goodness-of-fit  normality-assumption  probability  self-study  distributions  references  theory  time-series  clustering  econometrics  binomial  hypothesis-testing  variance  t-test  paired-comparisons  statistical-significance  ab-test  r  references  hypothesis-testing  t-test  normality-assumption  wilcoxon-mann-whitney  central-limit-theorem  t-test  data-visualization  interactive-visualization  goodness-of-fit 







4
Comment projeter un nouveau vecteur sur l'espace PCA?
Après avoir effectué l'analyse des composants principaux (PCA), je souhaite projeter un nouveau vecteur sur l'espace PCA (c'est-à-dire trouver ses coordonnées dans le système de coordonnées PCA). J'ai calculé PCA en langage R en utilisant prcomp. Maintenant, je devrais pouvoir multiplier mon vecteur par la matrice de rotation PCA. Les …
21 r  pca  r  variance  heteroscedasticity  misspecification  distributions  time-series  data-visualization  modeling  histogram  kolmogorov-smirnov  negative-binomial  likelihood-ratio  econometrics  panel-data  categorical-data  scales  survey  distributions  pdf  histogram  correlation  algorithms  r  gpu  parallel-computing  approximation  mean  median  references  sample-size  normality-assumption  central-limit-theorem  rule-of-thumb  confidence-interval  estimation  mixed-model  psychometrics  random-effects-model  hypothesis-testing  sample-size  dataset  large-data  regression  standard-deviation  variance  approximation  hypothesis-testing  variance  central-limit-theorem  kernel-trick  kernel-smoothing  error  sampling  hypothesis-testing  normality-assumption  philosophical  confidence-interval  modeling  model-selection  experiment-design  hypothesis-testing  statistical-significance  power  asymptotics  information-retrieval  anova  multiple-comparisons  ancova  classification  clustering  factor-analysis  psychometrics  r  sampling  expectation-maximization  markov-process  r  data-visualization  correlation  regression  statistical-significance  degrees-of-freedom  experiment-design  r  regression  curve-fitting  change-point  loess  machine-learning  classification  self-study  monte-carlo  markov-process  references  mathematical-statistics  data-visualization  python  cart  boosting  regression  classification  robust  cart  survey  binomial  psychometrics  likert  psychology  asymptotics  multinomial 


4
Quelles sont les valeurs correctes pour la précision et le rappel dans les cas de bord?
La précision est définie comme: p = true positives / (true positives + false positives) Est - il exact que, true positiveset false positivesapproche 0, la précision approche 1? Même question pour rappel: r = true positives / (true positives + false negatives) J'implémente actuellement un test statistique où j'ai …
20 precision-recall  data-visualization  logarithm  references  r  networks  data-visualization  standard-deviation  probability  binomial  negative-binomial  r  categorical-data  aggregation  plyr  survival  python  regression  r  t-test  bayesian  logistic  data-transformation  confidence-interval  t-test  interpretation  distributions  data-visualization  pca  genetics  r  finance  maximum  probability  standard-deviation  probability  r  information-theory  references  computational-statistics  computing  references  engineering-statistics  t-test  hypothesis-testing  independence  definition  r  censoring  negative-binomial  poisson-distribution  variance  mixed-model  correlation  intraclass-correlation  aggregation  interpretation  effect-size  hypothesis-testing  goodness-of-fit  normality-assumption  small-sample  distributions  regression  normality-assumption  t-test  anova  confidence-interval  z-statistic  finance  hypothesis-testing  mean  model-selection  information-geometry  bayesian  frequentist  terminology  type-i-and-ii-errors  cross-validation  smoothing  splines  data-transformation  normality-assumption  variance-stabilizing  r  spss  stata  python  correlation  logistic  logit  link-function  regression  predictor  pca  factor-analysis  r  bayesian  maximum-likelihood  mcmc  conditional-probability  statistical-significance  chi-squared  proportion  estimation  error  shrinkage  application  steins-phenomenon 

En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.