Questions marquées «random-variable»

Une variable aléatoire ou variable stochastique est une valeur qui est sujette à une variation aléatoire (c.-à-d. Le caractère aléatoire au sens mathématique).

1
Corrélation des variables aléatoires log-normales
Étant donné X1X1X_1 et X2X2X_2 variables aléatoires normales avec coefficient de corrélation ρρ\rho , comment puis-je trouver la corrélation entre les variables aléatoires lognormales suivantes Y1Y1Y_1 et Y2Y2Y_2 ? Y1=a1exp(μ1T+T−−√X1)Y1=a1exp⁡(μ1T+TX1)Y_1 = a_1 \exp(\mu_1 T + \sqrt{T}X_1) Y2=a2exp(μ2T+T−−√X2)Y2=a2exp⁡(μ2T+TX2)Y_2 = a_2 \exp(\mu_2 T + \sqrt{T}X_2) Maintenant, si et X 2 = σ …


1
Quelle est l'intuition derrière les échantillons échangeables sous l'hypothèse nulle?
Les tests de permutation (également appelés test de randomisation, test de re-randomisation ou test exact) sont très utiles et s'avèrent utiles lorsque l'hypothèse de distribution normale requise par exemple t-testn'est pas remplie et lorsque la transformation des valeurs par classement des un test non paramétrique comme Mann-Whitney-U-testcela entraînerait la perte …
15 hypothesis-testing  permutation-test  exchangeability  r  statistical-significance  loess  data-visualization  normal-distribution  pdf  ggplot2  kernel-smoothing  probability  self-study  expected-value  normal-distribution  prior  correlation  time-series  regression  heteroscedasticity  estimation  estimators  fisher-information  data-visualization  repeated-measures  binary-data  panel-data  mathematical-statistics  coefficient-of-variation  normal-distribution  order-statistics  regression  machine-learning  one-class  probability  estimators  forecasting  prediction  validation  finance  measurement-error  variance  mean  spatial  monte-carlo  data-visualization  boxplot  sampling  uniform  chi-squared  goodness-of-fit  probability  mixture  theory  gaussian-mixture  regression  statistical-significance  p-value  bootstrap  regression  multicollinearity  correlation  r  poisson-distribution  survival  regression  categorical-data  ordinal-data  ordered-logit  regression  interaction  time-series  machine-learning  forecasting  cross-validation  binomial  multiple-comparisons  simulation  false-discovery-rate  r  clustering  frequency  wilcoxon-mann-whitney  wilcoxon-signed-rank  r  svm  t-test  missing-data  excel  r  numerical-integration  r  random-variable  lme4-nlme  mixed-model  weighted-regression  power-law  errors-in-variables  machine-learning  classification  entropy  information-theory  mutual-information 




1
Caret glmnet vs cv.glmnet
Il semble y avoir beaucoup de confusion dans la comparaison de l'utilisation à l' glmnetintérieur caretpour rechercher un lambda optimal et à utiliser cv.glmnetpour faire la même tâche. De nombreuses questions ont été posées, par exemple: Modèle de classification train.glmnet vs cv.glmnet? Quelle est la bonne façon d'utiliser glmnet avec …

3
Pourquoi , mais ?
Sur cette page centrale AP Variables aléatoires vs Variables algébriques , l'auteur, Peter Flanagan-Hyde établit une distinction entre les variables algébriques et aléatoires. Il dit en partie x+x=2xx+x=2xx + x = 2x , mais X+X≠2XX+X≠2XX + X \neq 2X - en fait c'est le sous-titre de l'article. Quelle est la …





4
Estimateur non biaisé pour la plus petite des deux variables aléatoires
Supposons que X∼N(μx,σ2x)X∼N(μx,σx2)X \sim \mathcal{N}(\mu_x, \sigma^2_x) et Y∼N(μy,σ2y)Y∼N(μy,σy2)Y \sim \mathcal{N}(\mu_y, \sigma^2_y) z=min(μx,μy)z=min(μx,μy)z = \min(\mu_x, \mu_y)zzz L'estimateur simple de où et sont par exemple des moyennes d'échantillon de et , est biaisé (bien que cohérent). Il a tendance à sous-mesurer .min(x¯,y¯)min(x¯,y¯)\min(\bar{x}, \bar{y})x¯x¯\bar{x}y¯y¯\bar{y}XXXYYYzzz Je ne peux pas penser à un estimateur sans …

1
LARS vs descente coordonnée pour le lasso
Quels sont les avantages et les inconvénients de l'utilisation de LARS [1] par rapport à l'utilisation de la descente de coordonnées pour ajuster la régression linéaire régularisée L1? Je m'intéresse principalement aux aspects de performance (mes problèmes ont tendance à avoir Ndes centaines de milliers et p<20). Cependant, toute autre …

1
Package GBM vs Caret utilisant GBM
J'ai ajusté le modèle à l'aide caret, mais j'ai ensuite réexécuté le modèle à l'aide du gbmpackage. Je crois comprendre que le caretpackage utilise gbmet que la sortie doit être la même. Cependant, un simple test rapide utilisant data(iris)montre une différence dans le modèle d'environ 5% en utilisant RMSE et …

En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.