Questions marquées «panel-data»

Les données de panel se réfèrent à des données multidimensionnelles impliquant fréquemment des mesures dans le temps en économétrie. On l'appelle également données longitudinales en biostatistique.

5
Quel est le lien entre un «modèle à effets aléatoires» en économétrie et des modèles mixtes extérieurs à l'économétrie?
J'avais l'habitude de penser que le "modèle à effets aléatoires" en économétrie correspond à un "modèle mixte avec interception aléatoire" en dehors de l'économétrie, mais je ne suis pas sûr à l'heure actuelle. Le fait-il? L'économétrie utilise des termes tels que "effets fixes" et "effets aléatoires", ce qui diffère quelque …


4
Regroupement des erreurs standard dans R (manuellement ou dans plm)
J'essaie de comprendre le "clustering" d'erreur standard et comment exécuter dans R (c'est trivial dans Stata). En RI ont été infructueux en utilisant plmou en écrivant ma propre fonction. Je vais utiliser les diamondsdonnées du ggplot2paquet. Je peux faire des effets fixes avec des variables factices > library(plyr) > library(ggplot2) …


1
Les degrés de liberté peuvent-ils être un nombre non entier?
Lorsque j'utilise GAM, cela me donne un DF résiduel de (dernière ligne du code). Qu'est-ce que ça veut dire? Au-delà de l'exemple GAM, en général, le nombre de degrés de liberté peut-il être un nombre non entier?26.626.626.6 > library(gam) > summary(gam(mpg~lo(wt),data=mtcars)) Call: gam(formula = mpg ~ lo(wt), data = mtcars) …
27 r  degrees-of-freedom  gam  machine-learning  pca  lasso  probability  self-study  bootstrap  expected-value  regression  machine-learning  linear-model  probability  simulation  random-generation  machine-learning  distributions  svm  libsvm  classification  pca  multivariate-analysis  feature-selection  archaeology  r  regression  dataset  simulation  r  regression  time-series  forecasting  predictive-models  r  mean  sem  lavaan  machine-learning  regularization  regression  conv-neural-network  convolution  classification  deep-learning  conv-neural-network  regression  categorical-data  econometrics  r  confirmatory-factor  scale-invariance  self-study  unbiased-estimator  mse  regression  residuals  sampling  random-variable  sample  probability  random-variable  convergence  r  survival  weibull  references  autocorrelation  hypothesis-testing  distributions  correlation  regression  statistical-significance  regression-coefficients  univariate  categorical-data  chi-squared  regression  machine-learning  multiple-regression  categorical-data  linear-model  pca  factor-analysis  factor-rotation  classification  scikit-learn  logistic  p-value  regression  panel-data  multilevel-analysis  variance  bootstrap  bias  probability  r  distributions  interquartile  time-series  hypothesis-testing  normal-distribution  normality-assumption  kurtosis  arima  panel-data  stata  clustered-standard-errors  machine-learning  optimization  lasso  multivariate-analysis  ancova  machine-learning  cross-validation 


4
Comment projeter un nouveau vecteur sur l'espace PCA?
Après avoir effectué l'analyse des composants principaux (PCA), je souhaite projeter un nouveau vecteur sur l'espace PCA (c'est-à-dire trouver ses coordonnées dans le système de coordonnées PCA). J'ai calculé PCA en langage R en utilisant prcomp. Maintenant, je devrais pouvoir multiplier mon vecteur par la matrice de rotation PCA. Les …
21 r  pca  r  variance  heteroscedasticity  misspecification  distributions  time-series  data-visualization  modeling  histogram  kolmogorov-smirnov  negative-binomial  likelihood-ratio  econometrics  panel-data  categorical-data  scales  survey  distributions  pdf  histogram  correlation  algorithms  r  gpu  parallel-computing  approximation  mean  median  references  sample-size  normality-assumption  central-limit-theorem  rule-of-thumb  confidence-interval  estimation  mixed-model  psychometrics  random-effects-model  hypothesis-testing  sample-size  dataset  large-data  regression  standard-deviation  variance  approximation  hypothesis-testing  variance  central-limit-theorem  kernel-trick  kernel-smoothing  error  sampling  hypothesis-testing  normality-assumption  philosophical  confidence-interval  modeling  model-selection  experiment-design  hypothesis-testing  statistical-significance  power  asymptotics  information-retrieval  anova  multiple-comparisons  ancova  classification  clustering  factor-analysis  psychometrics  r  sampling  expectation-maximization  markov-process  r  data-visualization  correlation  regression  statistical-significance  degrees-of-freedom  experiment-design  r  regression  curve-fitting  change-point  loess  machine-learning  classification  self-study  monte-carlo  markov-process  references  mathematical-statistics  data-visualization  python  cart  boosting  regression  classification  robust  cart  survey  binomial  psychometrics  likert  psychology  asymptotics  multinomial 

1
Les splines peuvent-elles être utilisées pour la prédiction?
Je ne peux pas être précis sur la nature des données car elles sont propriétaires, mais supposons que nous ayons des données comme celle-ci: chaque mois, certaines personnes s'inscrivent à un service. Ensuite, au cours de chaque mois suivant, ces personnes peuvent mettre à niveau le service, interrompre le service …

2
Spécification d'un modèle de différence dans les différences avec plusieurs périodes
Lorsque j’estime un modèle de différence dans les différences avec deux périodes, le modèle de régression équivalent serait une. Yist=α+γs∗Treatment+λdt+δ∗(Treatment∗dt)+ϵistYist=α+γs∗Treatment+λdt+δ∗(Treatment∗dt)+ϵistY_{ist} = \alpha +\gamma_s*Treatment + \lambda d_t + \delta*(Treatment*d_t)+ \epsilon_{ist} où est un mannequin qui est égal à 1 si l'observation provient du groupe de traitementTreatmentTreatmentTreatment et est un mannequin qui …

1
Les modèles résiduels autocorrélés restent-ils même dans les modèles avec des structures de corrélation appropriées, et comment sélectionner les meilleurs modèles?
Le contexte Cette question utilise R, mais concerne des problèmes statistiques généraux. J'analyse les effets des facteurs de mortalité (% de mortalité due aux maladies et au parasitisme) sur le taux de croissance de la population de papillons au fil du temps, où les populations de larves ont été échantillonnées …

4
Quelles sont les différences entre les termes «analyse des séries chronologiques» et «analyse des données longitudinales»
Lorsque nous parlons de données longitudinales, nous pouvons faire référence aux données collectées au fil du temps auprès du même sujet / unité d'étude à plusieurs reprises, il existe donc des corrélations pour les observations au sein du même sujet, c'est-à-dire la similitude intra-sujet. Lorsque nous parlons de données de …

1
Comment analyser les données de comptage longitudinal: prise en compte de l'autocorrélation temporelle dans le GLMM?
Bonjour gourous statistiques et assistants de programmation R, Je m'intéresse à la modélisation des captures d'animaux en fonction des conditions environnementales et du jour de l'année. Dans le cadre d'une autre étude, j'ai dénombré des captures sur environ 160 jours sur trois ans. Chaque jour, j'ai la température, les précipitations, …

4
La précision de la machine augmentant le gradient diminue à mesure que le nombre d'itérations augmente
J'expérimente l'algorithme de la machine de renforcement de gradient via le caretpackage en R. À l'aide d'un petit ensemble de données d'admission à l'université, j'ai exécuté le code suivant: library(caret) ### Load admissions dataset. ### mydata <- read.csv("http://www.ats.ucla.edu/stat/data/binary.csv") ### Create yes/no levels for admission. ### mydata$admit_factor[mydata$admit==0] <- "no" mydata$admit_factor[mydata$admit==1] <- …
15 machine-learning  caret  boosting  gbm  hypothesis-testing  t-test  panel-data  psychometrics  intraclass-correlation  generalized-linear-model  categorical-data  binomial  model  intercept  causality  cross-correlation  distributions  ranks  p-value  z-test  sign-test  time-series  references  terminology  cross-correlation  definition  probability  distributions  beta-distribution  inverse-gamma  missing-data  paired-comparisons  paired-data  clustered-standard-errors  cluster-sample  time-series  arima  logistic  binary-data  odds-ratio  medicine  hypothesis-testing  wilcoxon-mann-whitney  unsupervised-learning  hierarchical-clustering  neural-networks  train  clustering  k-means  regression  ordinal-data  change-scores  machine-learning  experiment-design  roc  precision-recall  auc  stata  multilevel-analysis  regression  fitting  nonlinear  jmp  r  data-visualization  gam  gamm4  r  lme4-nlme  many-categories  regression  causality  instrumental-variables  endogeneity  controlling-for-a-variable 

1
Quelle est l'intuition derrière les échantillons échangeables sous l'hypothèse nulle?
Les tests de permutation (également appelés test de randomisation, test de re-randomisation ou test exact) sont très utiles et s'avèrent utiles lorsque l'hypothèse de distribution normale requise par exemple t-testn'est pas remplie et lorsque la transformation des valeurs par classement des un test non paramétrique comme Mann-Whitney-U-testcela entraînerait la perte …
15 hypothesis-testing  permutation-test  exchangeability  r  statistical-significance  loess  data-visualization  normal-distribution  pdf  ggplot2  kernel-smoothing  probability  self-study  expected-value  normal-distribution  prior  correlation  time-series  regression  heteroscedasticity  estimation  estimators  fisher-information  data-visualization  repeated-measures  binary-data  panel-data  mathematical-statistics  coefficient-of-variation  normal-distribution  order-statistics  regression  machine-learning  one-class  probability  estimators  forecasting  prediction  validation  finance  measurement-error  variance  mean  spatial  monte-carlo  data-visualization  boxplot  sampling  uniform  chi-squared  goodness-of-fit  probability  mixture  theory  gaussian-mixture  regression  statistical-significance  p-value  bootstrap  regression  multicollinearity  correlation  r  poisson-distribution  survival  regression  categorical-data  ordinal-data  ordered-logit  regression  interaction  time-series  machine-learning  forecasting  cross-validation  binomial  multiple-comparisons  simulation  false-discovery-rate  r  clustering  frequency  wilcoxon-mann-whitney  wilcoxon-signed-rank  r  svm  t-test  missing-data  excel  r  numerical-integration  r  random-variable  lme4-nlme  mixed-model  weighted-regression  power-law  errors-in-variables  machine-learning  classification  entropy  information-theory  mutual-information 


En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.