Questions marquées «forecasting»

Prédiction des événements futurs. Il s'agit d'un cas particulier de [prédiction], dans le contexte de [séries temporelles].



2
Quels modèles économétriques peuvent être utilisés pour prévoir les rendements des titres + questions ARIMA / GARCH
J'essaie d'écrire une thèse de premier cycle dans laquelle je teste le pouvoir prédictif d'un modèle économétrique donné sur une série temporelle financière donnée. J'ai besoin de conseils sur la façon de procéder. Pour mettre les choses en contexte, j'ai surtout économétriquement autodidacte; le seul cours que j'ai suivi sur …

1
Problèmes de prédiction de séries chronologiques
J'ai une question sur la modélisation des séries chronologiques dans R. mes données se composent de la matrice suivante: 1 0.03333333 0.01111111 0.9555556 2 0.03810624 0.02309469 0.9387991 3 0.00000000 0.03846154 0.9615385 4 0.03776683 0.03119869 0.9310345 5 0.06606607 0.01201201 0.9219219 6 0.03900325 0.02058505 0.9404117 7 0.03125000 0.01562500 0.9531250 8 0.00000000 0.00000000 …

3
Trouvez la distribution et passez à la distribution normale
J'ai des données qui décrivent la fréquence à laquelle un événement se produit pendant une heure ("nombre par heure", nph) et la durée des événements ("durée en secondes par heure", dph). Ce sont les données d'origine: nph <- c(2.50000000003638, 3.78947368414551, 1.51456310682008, 5.84686774940732, 4.58823529414907, 5.59999999993481, 5.06666666666667, 11.6470588233699, 1.99999999998209, NA, 4.46153846149851, 18, …
8 normal-distribution  data-transformation  logistic  generalized-linear-model  ridge-regression  t-test  wilcoxon-signed-rank  paired-data  naive-bayes  distributions  logistic  goodness-of-fit  time-series  eviews  ecm  panel-data  reliability  psychometrics  validity  cronbachs-alpha  self-study  random-variable  expected-value  median  regression  self-study  multiple-regression  linear-model  forecasting  prediction-interval  normal-distribution  excel  bayesian  multivariate-analysis  modeling  predictive-models  canonical-correlation  rbm  time-series  machine-learning  neural-networks  fishers-exact  factorisation-theorem  svm  prediction  linear  reinforcement-learning  cdf  probability-inequalities  ecdf  time-series  kalman-filter  state-space-models  dynamic-regression  index-decomposition  sampling  stratification  cluster-sample  survey-sampling  distributions  maximum-likelihood  gamma-distribution 


4
Choisir un modèle de régression
Comment peut-on objectivement (lire "algorithmiquement") sélectionner un modèle approprié pour effectuer une régression linéaire des moindres carrés simple avec deux variables? Par exemple, disons que les données semblent montrer une tendance quadratique et qu'une parabole est générée, qui correspond assez bien aux données. Comment justifions-nous d'en faire la régression? Ou …



2
Pourquoi un modèle statistique serait-il surchargé s'il était doté d'un énorme ensemble de données?
Mon projet actuel peut m'obliger à construire un modèle pour prédire le comportement d'un certain groupe de personnes. l'ensemble de données de formation ne contient que 6 variables (id est uniquement à des fins d'identification): id, age, income, gender, job category, monthly spend dans laquelle se monthly spendtrouve la variable …
8 modeling  large-data  overfitting  clustering  algorithms  error  spatial  r  regression  predictive-models  linear-model  average  measurement-error  weighted-mean  error-propagation  python  standard-error  weighted-regression  hypothesis-testing  time-series  machine-learning  self-study  arima  regression  correlation  anova  statistical-significance  excel  r  regression  distributions  statistical-significance  contingency-tables  regression  optimization  measurement-error  loss-functions  image-processing  java  panel-data  probability  conditional-probability  r  lme4-nlme  model-comparison  time-series  probability  probability  conditional-probability  logistic  multiple-regression  model-selection  r  regression  model-based-clustering  svm  feature-selection  feature-construction  time-series  forecasting  stationarity  r  distributions  bootstrap  r  distributions  estimation  maximum-likelihood  garch  references  probability  conditional-probability  regression  logistic  regression-coefficients  model-comparison  confidence-interval  r  regression  r  generalized-linear-model  outliers  robust  regression  classification  categorical-data  r  association-rules  machine-learning  distributions  posterior  likelihood  r  hypothesis-testing  normality-assumption  missing-data  convergence  expectation-maximization  regression  self-study  categorical-data  regression  simulation  regression  self-study  self-study  gamma-distribution  modeling  microarray  synthetic-data 

2
auto.arima ne reconnaît pas le modèle saisonnier
J'ai un ensemble de données météorologiques quotidiennes, qui a, sans surprise, un effet saisonnier très fort. J'ai adapté un modèle ARIMA à cet ensemble de données en utilisant la fonction auto.arima du package de prévision. À ma grande surprise, la fonction n'applique aucune opération saisonnière - différenciation saisonnière, composantes saisonnières …

1
Prévision de séries chronologiques hautement corrélées
Dans les prévisions de séries chronologiques utilisant divers modèles comme AR, MA, ARMA, etc., nous nous concentrons généralement sur la modélisation des données dans le changement de temps. Mais lorsque nous avons 2 séries chronologiques dont le coefficient de corrélation de Pearson montre qu'elles sont fortement corrélées, est-il possible de …


1
Prévision de séries chronologiques non stationnaires
Je voudrais prévoir les séries chronologiques non stationnaires, impliquant plusieurs hypothèses a priori cruciales découlant de l'étude des instances de telles séries. J'ai construit une fonction de distribution de probabilité en un point moyennée dans le temps approximée par une distribution normale. p^(x)=12πσ2∞−−−−−√exp(−x22σ2∞)p^(x)=12πσ∞2exp⁡(−x22σ∞2)\hat p(x) = \frac{1}{\sqrt{2\pi \sigma^2_{\infty}}} \exp\left(-\frac{x^2}{2\sigma^2_{\infty}}\right) De ce …

1
Une façon plus simple de calculer la moyenne mobile à pondération exponentielle?
Méthode proposée: Étant donné une série temporelle , je veux calculer une moyenne mobile pondérée avec une fenêtre de moyenne de points, où les pondérations favorisent les valeurs plus récentes par rapport aux valeurs plus anciennes.Xjexix_iNNN En choisissant les poids, j'utilise le fait familier qu'une série géométrique converge vers 1, …

En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.