Questions marquées «conditional-expectation»

Une espérance conditionnelle est l'attente d'une variable aléatoire, étant donné des informations sur une ou plusieurs autres variables (principalement, en spécifiant leur valeur).

1
Notation en indice dans les attentes
Quelle est la signification exacte de la notation en indice dans les anticipations conditionnelles dans le cadre de la théorie des mesures? Ces indices n'apparaissent pas dans la définition de l'espérance conditionnelle, mais nous pouvons le voir par exemple sur cette page de wikipedia . (Notez que ce n'était pas …

3
Une généralisation du droit des attentes itérées
Je suis récemment tombé sur cette identité: E[E(Y|X,Z)|X]=E[Y|X]E[E(Y|X,Z)|X]=E[Y|X]E \left[ E \left(Y|X,Z \right) |X \right] =E \left[Y | X \right] Je suis bien sûr familier avec la version simplifiée de cette règle, à savoir que mais je n’ai pas pu trouver de justification pour sa généralisation.E[E(Y|X)]=E(Y)E[E(Y|X)]=E(Y)E \left[ E \left(Y|X \right) \right]=E …

3
Intuition pour l'attente conditionnelle de -algebra
Soit un espace de probabilité, étant donné une variable aléatoire et une -algebra nous pouvons construire une nouvelle variable aléatoire , qui est l'espérance conditionnelle.( Ω , F , μ ) (Ω,F,μ)(\Omega,\mathscr{F},\mu)ξ : Ω → Rξ:Ω→R\xi:\Omega \to \mathbb{R} σ σ\sigmaG ⊆ FG⊆F\mathscr{G}\subseteq \mathscr{F} E [ ξ |G ]E[ξ|G]E[\xi|\mathscr{G}] Quelle est …

4
Problème avec la preuve de l'attente conditionnelle comme meilleur prédicteur
J'ai un problème avec la preuve de E(Y|X)∈argming(X)E[(Y−g(X))2]E(Y|X)∈arg⁡ming(X)E[(Y−g(X))2]E(Y|X) \in \arg \min_{g(X)} E\Big[\big(Y - g(X)\big)^2\Big] qui révèlent très probablement une incompréhension plus profonde des attentes et des attentes conditionnelles. La preuve que je connais va comme suit (une autre version de cette preuve peut être trouvée ici ) ===argming(X)E[(Y−g(x))2]argming(X)E[(Y−E(Y|X)+E(Y|X)−g(X))2]argming(x)E[(Y−E(Y|X))2+2(Y−E(Y|X))(E(Y|X)−g(X))+(E(Y|X)−g(X))2]argming(x)E[2(Y−E(Y|X))(E(Y|X)−g(X))+(E(Y|X)−g(X))2]arg⁡ming(X)E[(Y−g(x))2]=arg⁡ming(X)E[(Y−E(Y|X)+E(Y|X)−g(X))2]=arg⁡ming(x)E[(Y−E(Y|X))2+2(Y−E(Y|X))(E(Y|X)−g(X))+(E(Y|X)−g(X))2]=arg⁡ming(x)E[2(Y−E(Y|X))(E(Y|X)−g(X))+(E(Y|X)−g(X))2]\begin{align*} &\arg \min_{g(X)} …



4
Valeur attendue de la médiane de l'échantillon compte tenu de la moyenne de l'échantillon
Soit YYY la médiane et soit X¯X¯\bar{X} la moyenne d'un échantillon aléatoire de taille n=2k+1n=2k+1n=2k+1 d'une distribution N(μ,σ2)N(μ,σ2)N(\mu,\sigma^2) . Comment puis-je calculer E(Y|X¯=x¯)E(Y|X¯=x¯)E(Y|\bar{X}=\bar{x}) ? Intuitivement, en raison de l'hypothèse de normalité, il est logique de prétendre que E(Y|X¯=x¯)=x¯E(Y|X¯=x¯)=x¯E(Y|\bar{X}=\bar{x})=\bar{x} et c'est effectivement la bonne réponse. Cela peut-il être montré avec rigueur? …

2
Loi de la variance totale comme théorème de Pythagore
Supposons que et ont un second moment fini. Dans l'espace de Hilbert de variables aléatoires de second moment fini (avec le produit interne de défini par , ), nous pouvons interpréter comme la projection de sur l'espace des fonctions de .XXXYYYT1,T2T1,T2T_1,T_2E(T1T2)E(T1T2)E(T_1T_2)||T||2=E(T2)||T||2=E(T2)||T||^2=E(T^2)E(Y|X)E(Y|X)E(Y|X)OuiOuiYXXX Nous savons également que la loi de la variance …

3
Si
Question Si sont IID, alors calculez , où .X1,⋯,Xn∼N(μ,1)X1,⋯,Xn∼N(μ,1)X_1,\cdots,X_n \sim \mathcal{N}(\mu, 1)E(X1∣T)E(X1∣T)\mathbb{E}\left( X_1 \mid T \right)T=∑iXiT=∑iXiT = \sum_i X_i Tentative : veuillez vérifier si les informations ci-dessous sont correctes. Disons que nous prenons la somme de ces attentes conditionnelles telles que Cela signifie que chaque puisque sont IID.∑iE(Xi∣T)=E(∑iXi∣T)=T.∑iE(Xi∣T)=E(∑iXi∣T)=T.\begin{align} \sum_i \mathbb{E}\left( …

2
Espérance conditionnelle d'une variable aléatoire exponentielle
Pour une variable aléatoire X∼Exp(λ)X∼Exp(λ)X\sim \text{Exp}(\lambda) ( E[X]=1λE[X]=1λ\mathbb{E}[X] = \frac{1}{\lambda} ) Je sens intuitivement queE[X|X>x]E[X|X>x]\mathbb{E}[X|X > x]devrait être égal àx+E[X]x+E[X]x + \mathbb{E}[X]puisque par la propriété sans mémoire la distribution deX|X>xX|X>xX|X > xest le même que celui deXXXmais décalé vers la droite dexxx. Cependant, j'ai du mal à utiliser la propriété …


1

1
R / mgcv: Pourquoi les produits tenseurs te () et ti () produisent-ils des surfaces différentes?
Le mgcvpackage pour Ra deux fonctions pour ajuster les interactions des produits tensoriels: te()et ti(). Je comprends la division de base du travail entre les deux (ajustement d'une interaction non linéaire vs décomposition de cette interaction en effets principaux et interaction). Ce que je ne comprends pas, c'est pourquoi te(x1, …
11 r  gam  mgcv  conditional-probability  mixed-model  references  bayesian  estimation  conditional-probability  machine-learning  optimization  gradient-descent  r  hypothesis-testing  wilcoxon-mann-whitney  time-series  bayesian  inference  change-point  time-series  anova  repeated-measures  statistical-significance  bayesian  contingency-tables  regression  prediction  quantiles  classification  auc  k-means  scikit-learn  regression  spatial  circular-statistics  t-test  effect-size  cohens-d  r  cross-validation  feature-selection  caret  machine-learning  modeling  python  optimization  frequentist  correlation  sample-size  normalization  group-differences  heteroscedasticity  independence  generalized-least-squares  lme4-nlme  references  mcmc  metropolis-hastings  optimization  r  logistic  feature-selection  separation  clustering  k-means  normal-distribution  gaussian-mixture  kullback-leibler  java  spark-mllib  data-visualization  categorical-data  barplot  hypothesis-testing  statistical-significance  chi-squared  type-i-and-ii-errors  pca  scikit-learn  conditional-expectation  statistical-significance  meta-analysis  intuition  r  time-series  multivariate-analysis  garch  machine-learning  classification  data-mining  missing-data  cart  regression  cross-validation  matrix-decomposition  categorical-data  repeated-measures  chi-squared  assumptions  contingency-tables  prediction  binary-data  trend  test-for-trend  matrix-inverse  anova  categorical-data  regression-coefficients  standard-error  r  distributions  exponential  interarrival-time  copula  log-likelihood  time-series  forecasting  prediction-interval  mean  standard-error  meta-analysis  meta-regression  network-meta-analysis  systematic-review  normal-distribution  multiple-regression  generalized-linear-model  poisson-distribution  poisson-regression  r  sas  cohens-kappa 



En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.