Questions marquées «algorithms»

Une liste sans ambiguïté des étapes de calcul impliquées dans la recherche d'une solution à une classe de problèmes.



3
Algorithme Apriori en anglais simple?
J'ai lu un article wiki sur Apriori. J'ai du mal à comprendre le pruneau et l'étape Join. Quelqu'un peut-il m'expliquer comment l'algorithme Apriori fonctionne en termes simples (de telle sorte que les novices comme moi peuvent facilement comprendre)? Ce sera bien si quelqu'un explique le processus étape par étape qui …

3
Cluster efficace dans l'espace
La plupart des algorithmes de clustering que j'ai vus commencent par créer des distances de chaque point entre tous les points, ce qui devient problématique sur des ensembles de données plus importants. Y en a-t-il un qui ne le fait pas? Ou le fait-il dans une sorte d'approche partielle / …

3
Cyclisme dans l'algorithme k-means
Selon wiki, le critère de convergence le plus utilisé est "l'assignation n'a pas changé". Je me demandais si le cyclisme peut se produire si nous utilisons un tel critère de convergence? Je serais heureux si quelqu'un faisait référence à un article qui donne un exemple de cyclisme ou prouve que …


2
Calculer la courbe ROC pour les données
Donc, j'ai 16 essais dans lesquels j'essaie d'authentifier une personne à partir d'un trait biométrique en utilisant Hamming Distance. Mon seuil est fixé à 3,5. Mes données sont ci-dessous et seul l'essai 1 est un vrai positif: Trial Hamming Distance 1 0.34 2 0.37 3 0.34 4 0.29 5 0.55 …
9 mathematical-statistics  roc  classification  cross-validation  pac-learning  r  anova  survival  hazard  machine-learning  data-mining  hypothesis-testing  regression  random-variable  non-independent  normal-distribution  approximation  central-limit-theorem  interpolation  splines  distributions  kernel-smoothing  r  data-visualization  ggplot2  distributions  binomial  random-variable  poisson-distribution  simulation  kalman-filter  regression  lasso  regularization  lme4-nlme  model-selection  aic  r  mcmc  dlm  particle-filter  r  panel-data  multilevel-analysis  model-selection  entropy  graphical-model  r  distributions  quantiles  qq-plot  svm  matlab  regression  lasso  regularization  entropy  inference  r  distributions  dataset  algorithms  matrix-decomposition  regression  modeling  interaction  regularization  expected-value  exponential  gamma-distribution  mcmc  gibbs  probability  self-study  normality-assumption  naive-bayes  bayes-optimal-classifier  standard-deviation  classification  optimization  control-chart  engineering-statistics  regression  lasso  regularization  regression  references  lasso  regularization  elastic-net  r  distributions  aggregation  clustering  algorithms  regression  correlation  modeling  distributions  time-series  standard-deviation  goodness-of-fit  hypothesis-testing  statistical-significance  sample  binary-data  estimation  random-variable  interpolation  distributions  probability  chi-squared  predictor  outliers  regression  modeling  interaction 

1
Différence entre recuit simulé et plusieurs gourmands
J'essaie de comprendre quelle est la différence entre le recuit simulé et l'exécution de plusieurs algorithmes gourmands d'escalade. D'après ma compréhension, l'algorithme gourmand poussera le score à un maximum local, mais si nous commençons avec plusieurs configurations aléatoires et appliquons gourmand à toutes, nous aurons plusieurs maximums locaux. Ensuite, nous …


3
Comment effectuer une SVD pour imputer des valeurs manquantes, un exemple concret
J'ai lu les excellents commentaires sur la façon de traiter les valeurs manquantes avant d'appliquer SVD, mais j'aimerais savoir comment cela fonctionne avec un exemple simple: Movie1 Movie2 Movie3 User1 5 4 User2 2 5 5 User3 3 4 User4 1 5 User5 5 1 5 Étant donné la matrice …
8 r  missing-data  data-imputation  svd  sampling  matlab  mcmc  importance-sampling  predictive-models  prediction  algorithms  graphical-model  graph-theory  r  regression  regression-coefficients  r-squared  r  regression  modeling  confounding  residuals  fitting  glmm  zero-inflation  overdispersion  optimization  curve-fitting  regression  time-series  order-statistics  bayesian  prior  uninformative-prior  probability  discrete-data  kolmogorov-smirnov  r  data-visualization  histogram  dimensionality-reduction  classification  clustering  accuracy  semi-supervised  labeling  state-space-models  t-test  biostatistics  paired-comparisons  paired-data  bioinformatics  regression  logistic  multiple-regression  mixed-model  random-effects-model  neural-networks  error-propagation  numerical-integration  time-series  missing-data  data-imputation  probability  self-study  combinatorics  survival  cox-model  statistical-significance  wilcoxon-mann-whitney  hypothesis-testing  distributions  normal-distribution  variance  t-distribution  probability  simulation  random-walk  diffusion  hypothesis-testing  z-test  hypothesis-testing  data-transformation  lognormal  r  regression  agreement-statistics  classification  svm  mixed-model  non-independent  observational-study  goodness-of-fit  residuals  confirmatory-factor  neural-networks  deep-learning 

2
Pourquoi un modèle statistique serait-il surchargé s'il était doté d'un énorme ensemble de données?
Mon projet actuel peut m'obliger à construire un modèle pour prédire le comportement d'un certain groupe de personnes. l'ensemble de données de formation ne contient que 6 variables (id est uniquement à des fins d'identification): id, age, income, gender, job category, monthly spend dans laquelle se monthly spendtrouve la variable …
8 modeling  large-data  overfitting  clustering  algorithms  error  spatial  r  regression  predictive-models  linear-model  average  measurement-error  weighted-mean  error-propagation  python  standard-error  weighted-regression  hypothesis-testing  time-series  machine-learning  self-study  arima  regression  correlation  anova  statistical-significance  excel  r  regression  distributions  statistical-significance  contingency-tables  regression  optimization  measurement-error  loss-functions  image-processing  java  panel-data  probability  conditional-probability  r  lme4-nlme  model-comparison  time-series  probability  probability  conditional-probability  logistic  multiple-regression  model-selection  r  regression  model-based-clustering  svm  feature-selection  feature-construction  time-series  forecasting  stationarity  r  distributions  bootstrap  r  distributions  estimation  maximum-likelihood  garch  references  probability  conditional-probability  regression  logistic  regression-coefficients  model-comparison  confidence-interval  r  regression  r  generalized-linear-model  outliers  robust  regression  classification  categorical-data  r  association-rules  machine-learning  distributions  posterior  likelihood  r  hypothesis-testing  normality-assumption  missing-data  convergence  expectation-maximization  regression  self-study  categorical-data  regression  simulation  regression  self-study  self-study  gamma-distribution  modeling  microarray  synthetic-data 

1
Une façon plus simple de calculer la moyenne mobile à pondération exponentielle?
Méthode proposée: Étant donné une série temporelle , je veux calculer une moyenne mobile pondérée avec une fenêtre de moyenne de points, où les pondérations favorisent les valeurs plus récentes par rapport aux valeurs plus anciennes.Xjexix_iNNN En choisissant les poids, j'utilise le fait familier qu'une série géométrique converge vers 1, …


4
FA: Choix de la matrice de rotation, basée sur des «critères de structure simples»
L'une des questions les plus importantes dans l'utilisation de l'analyse factorielle est son interprétation. L'analyse factorielle utilise souvent la rotation des facteurs pour améliorer son interprétation. Après une rotation satisfaisante, la matrice des facteurs de chargement pivotée L » aura la même capacité à représenter la matrice de corrélation et …
En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.