Questions marquées «markov-process»

Un processus stochastique avec la propriété que le futur est conditionnellement indépendant du passé, étant donné le présent.

1
Pourquoi Anova () et drop1 () ont-ils fourni des réponses différentes pour les GLMM?
J'ai un GLMM du formulaire: lmer(present? ~ factor1 + factor2 + continuous + factor1*continuous + (1 | factor3), family=binomial) Lorsque j'utilise drop1(model, test="Chi"), j'obtiens des résultats différents de ceux que j'utilise à Anova(model, type="III")partir du package de voiture ou summary(model). Ces deux derniers donnent les mêmes réponses. En utilisant un …
10 r  anova  glmm  r  mixed-model  bootstrap  sample-size  cross-validation  roc  auc  sampling  stratification  random-allocation  logistic  stata  interpretation  proportion  r  regression  multiple-regression  linear-model  lm  r  cross-validation  cart  rpart  logistic  generalized-linear-model  econometrics  experiment-design  causality  instrumental-variables  random-allocation  predictive-models  data-mining  estimation  contingency-tables  epidemiology  standard-deviation  mean  ancova  psychology  statistical-significance  cross-validation  synthetic-data  poisson-distribution  negative-binomial  bioinformatics  sequence-analysis  distributions  binomial  classification  k-means  distance  unsupervised-learning  euclidean  correlation  chi-squared  spearman-rho  forecasting  excel  exponential-smoothing  binomial  sample-size  r  change-point  wilcoxon-signed-rank  ranks  clustering  matlab  covariance  covariance-matrix  normal-distribution  simulation  random-generation  bivariate  standardization  confounding  z-statistic  forecasting  arima  minitab  poisson-distribution  negative-binomial  poisson-regression  overdispersion  probability  self-study  markov-process  estimation  maximum-likelihood  classification  pca  group-differences  chi-squared  survival  missing-data  contingency-tables  anova  proportion 


3
Nombre prévu de lancers de pièces pour obtenir N consécutifs, étant donné M consécutifs
Interviewstreet a eu son deuxième CodeSprint en janvier qui comprenait la question ci-dessous. La réponse programmatique est publiée mais ne comprend pas d'explication statistique. (Vous pouvez voir le problème d'origine et la solution publiée en vous connectant au site Interviewstreet avec Google Creds, puis en accédant au problème Coin Tosses …


2
Théorème de limite centrale pour les chaînes de Markov
\newcommand{\E}{\mathbb{E}}\newcommand{\P}{\mathbb{P}} Le théorème de la limite centrale (CLT) indique que pour indépendants et répartis de manière identique (iid) avec et , la somme converge vers une distribution normale comme : X1,X2,…X1,X2,…X_1,X_2,\dotsE[Xi]=0E[Xi]=0\E[X_i]=0Var(Xi)&lt;∞Var⁡(Xi)&lt;∞\operatorname{ Var} (X_i)<\inftyn→∞n→∞n\to\infty∑i=1nXi→N(0,n−−√).∑i=1nXi→N(0,n). \sum_{i=1}^n X_i \to N\left(0, \sqrt{n}\right). Supposons plutôt que forment une chaîne de Markov à états finis avec …

1
R régression linéaire variable catégorielle valeur «cachée»
Ceci est juste un exemple que j'ai rencontré plusieurs fois, donc je n'ai pas d'échantillons de données. Exécution d'un modèle de régression linéaire dans R: a.lm = lm(Y ~ x1 + x2) x1est une variable continue. x2est catégorique et a trois valeurs, par exemple "Low", "Medium" et "High". Cependant, la …
10 r  regression  categorical-data  regression-coefficients  categorical-encoding  machine-learning  random-forest  anova  spss  r  self-study  bootstrap  monte-carlo  r  multiple-regression  partitioning  neural-networks  normalization  machine-learning  svm  kernel-trick  self-study  survival  cox-model  repeated-measures  survey  likert  correlation  variance  sampling  meta-analysis  anova  independence  sample  assumptions  bayesian  covariance  r  regression  time-series  mathematical-statistics  graphical-model  machine-learning  linear-model  kernel-trick  linear-algebra  self-study  moments  function  correlation  spss  probability  confidence-interval  sampling  mean  population  r  generalized-linear-model  prediction  offset  data-visualization  clustering  sas  cart  binning  sas  logistic  causality  regression  self-study  standard-error  r  distributions  r  regression  time-series  multiple-regression  python  chi-squared  independence  sample  clustering  data-mining  rapidminer  probability  stochastic-processes  clustering  binary-data  dimensionality-reduction  svd  correspondence-analysis  data-visualization  excel  c#  hypothesis-testing  econometrics  survey  rating  composite  regression  least-squares  mcmc  markov-process  kullback-leibler  convergence  predictive-models  r  regression  anova  confidence-interval  survival  cox-model  hazard  normal-distribution  autoregressive  mixed-model  r  mixed-model  sas  hypothesis-testing  mediation  interaction 





2

4
Valeur attendue pour Worm et Apple
Une pomme est situé au sommet AAA de pentagone , et une vis sans fin se trouve à une distance deux sommets, à . Chaque jour, le ver rampe avec une probabilité égale à l'un des deux sommets adjacents. Ainsi, après un jour, le ver est au sommet ou , …




En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.