Questions marquées «gam»

Le modèle additif généralisé (GAM) est un modèle linéaire généralisé (GLM) dans lequel la variable de réponse dépend de fonctions lisses inconnues de certaines variables prédictives.

4
Pourquoi l'inclusion de latitude et de longitude dans un GAM explique-t-elle l'autocorrélation spatiale?
J'ai produit des modèles additifs généralisés pour la déforestation. Pour prendre en compte l'autocorrélation spatiale, j'ai inclus latitude et longitude en tant que terme d'interaction lissé (c'est-à-dire s (x, y)). Je me suis basé sur la lecture de nombreux articles dans lesquels les auteurs disaient "pour rendre compte de l'autocorrélation …

1
Les degrés de liberté peuvent-ils être un nombre non entier?
Lorsque j'utilise GAM, cela me donne un DF résiduel de (dernière ligne du code). Qu'est-ce que ça veut dire? Au-delà de l'exemple GAM, en général, le nombre de degrés de liberté peut-il être un nombre non entier?26.626.626.6 > library(gam) > summary(gam(mpg~lo(wt),data=mtcars)) Call: gam(formula = mpg ~ lo(wt), data = mtcars) …
27 r  degrees-of-freedom  gam  machine-learning  pca  lasso  probability  self-study  bootstrap  expected-value  regression  machine-learning  linear-model  probability  simulation  random-generation  machine-learning  distributions  svm  libsvm  classification  pca  multivariate-analysis  feature-selection  archaeology  r  regression  dataset  simulation  r  regression  time-series  forecasting  predictive-models  r  mean  sem  lavaan  machine-learning  regularization  regression  conv-neural-network  convolution  classification  deep-learning  conv-neural-network  regression  categorical-data  econometrics  r  confirmatory-factor  scale-invariance  self-study  unbiased-estimator  mse  regression  residuals  sampling  random-variable  sample  probability  random-variable  convergence  r  survival  weibull  references  autocorrelation  hypothesis-testing  distributions  correlation  regression  statistical-significance  regression-coefficients  univariate  categorical-data  chi-squared  regression  machine-learning  multiple-regression  categorical-data  linear-model  pca  factor-analysis  factor-rotation  classification  scikit-learn  logistic  p-value  regression  panel-data  multilevel-analysis  variance  bootstrap  bias  probability  r  distributions  interquartile  time-series  hypothesis-testing  normal-distribution  normality-assumption  kurtosis  arima  panel-data  stata  clustered-standard-errors  machine-learning  optimization  lasso  multivariate-analysis  ancova  machine-learning  cross-validation 

2
Comment inclure un terme d'interaction dans GAM?
Le code suivant évalue la similitude entre deux séries chronologiques: set.seed(10) RandData <- rnorm(8760*2) America <- rep(c('NewYork','Miami'),each=8760) Date = seq(from=as.POSIXct("1991-01-01 00:00"), to=as.POSIXct("1991-12-31 23:00"), length=8760) DatNew <- data.frame(Loc = America, Doy = as.numeric(format(Date,format = "%j")), Tod = as.numeric(format(Date,format = "%H")), Temp = RandData, DecTime = rep(seq(1, length(RandData)/2) / (length(RandData)/2), 2)) require(mgcv) …


4
La précision de la machine augmentant le gradient diminue à mesure que le nombre d'itérations augmente
J'expérimente l'algorithme de la machine de renforcement de gradient via le caretpackage en R. À l'aide d'un petit ensemble de données d'admission à l'université, j'ai exécuté le code suivant: library(caret) ### Load admissions dataset. ### mydata <- read.csv("http://www.ats.ucla.edu/stat/data/binary.csv") ### Create yes/no levels for admission. ### mydata$admit_factor[mydata$admit==0] <- "no" mydata$admit_factor[mydata$admit==1] <- …
15 machine-learning  caret  boosting  gbm  hypothesis-testing  t-test  panel-data  psychometrics  intraclass-correlation  generalized-linear-model  categorical-data  binomial  model  intercept  causality  cross-correlation  distributions  ranks  p-value  z-test  sign-test  time-series  references  terminology  cross-correlation  definition  probability  distributions  beta-distribution  inverse-gamma  missing-data  paired-comparisons  paired-data  clustered-standard-errors  cluster-sample  time-series  arima  logistic  binary-data  odds-ratio  medicine  hypothesis-testing  wilcoxon-mann-whitney  unsupervised-learning  hierarchical-clustering  neural-networks  train  clustering  k-means  regression  ordinal-data  change-scores  machine-learning  experiment-design  roc  precision-recall  auc  stata  multilevel-analysis  regression  fitting  nonlinear  jmp  r  data-visualization  gam  gamm4  r  lme4-nlme  many-categories  regression  causality  instrumental-variables  endogeneity  controlling-for-a-variable 

3
Quand utiliser un GAM vs GLM
Je me rends compte que cela peut être une question potentiellement large, mais je me demandais s'il existe des hypothèses généralisables qui indiquent l'utilisation d'un GAM (modèle additif généralisé) par rapport à un GLM (modèle linéaire généralisé)? Quelqu'un m'a récemment dit que les GAM ne devraient être utilisés que lorsque …

3
Intervalle de confiance pour le modèle GAM
mgcv::gamPage d'aide de lecture : des intervalles de confiance / crédibles sont facilement disponibles pour toute quantité prévue à l'aide d'un modèle ajusté Cependant, je ne peux pas trouver un moyen d'en obtenir un. Je pensais predict.gamavoir un paramètre type=confidenceet un levelmais ce n'est pas le cas. Pouvez-vous m'aider à …

1
Bibliothèques Python de modèle additif généralisé
Je sais que R a des bibliothèques gam et mgcv pour les modèles additifs généralisés. Mais j'ai du mal à trouver leurs homologues dans l'écosystème Python (les modèles de statistiques n'ont qu'un prototype dans le bac à sable). Quelqu'un connaît-il les bibliothèques python existantes? Qui sait que cela pourrait être …
14 gam 

1
GAM vs LOESS vs splines
Contexte : Je veux tracer une ligne dans un nuage de points qui n'apparaît pas paramétrique, donc j'utilise geom_smooth()in ggplotin R. Il retourne automatiquement geom_smooth: method="auto" and size of largest group is >=1000, so using gam with formula: y ~ s(x, bs = "cs"). Use 'method = x' to change …

1
Modèles additifs généralisés (GAM), interactions et covariables
J'ai exploré un certain nombre d'outils de prévision et j'ai trouvé que les modèles additifs généralisés (GAM) avaient le plus de potentiel à cette fin. Les GAM sont super! Ils permettent de spécifier très succinctement des modèles complexes. Cependant, cette même concision me cause une certaine confusion, en particulier en …
12 r  modeling  gam  mgcv 

1
Résumé d'un ajustement GAM
Si nous adaptons un GAM comme: gam.fit = gam::gam(Outstate ~ Private + s(Room.Board, df = 2) + s(PhD, df = 2) + s(perc.alumni, df = 2) + s(Expend, df = 5) + s(Grad.Rate, df = 2), data = College) Où, nous utilisons l'ensemble de données College, qui peut être trouvé …
12 anova  gam 

1
R / mgcv: Pourquoi les produits tenseurs te () et ti () produisent-ils des surfaces différentes?
Le mgcvpackage pour Ra deux fonctions pour ajuster les interactions des produits tensoriels: te()et ti(). Je comprends la division de base du travail entre les deux (ajustement d'une interaction non linéaire vs décomposition de cette interaction en effets principaux et interaction). Ce que je ne comprends pas, c'est pourquoi te(x1, …
11 r  gam  mgcv  conditional-probability  mixed-model  references  bayesian  estimation  conditional-probability  machine-learning  optimization  gradient-descent  r  hypothesis-testing  wilcoxon-mann-whitney  time-series  bayesian  inference  change-point  time-series  anova  repeated-measures  statistical-significance  bayesian  contingency-tables  regression  prediction  quantiles  classification  auc  k-means  scikit-learn  regression  spatial  circular-statistics  t-test  effect-size  cohens-d  r  cross-validation  feature-selection  caret  machine-learning  modeling  python  optimization  frequentist  correlation  sample-size  normalization  group-differences  heteroscedasticity  independence  generalized-least-squares  lme4-nlme  references  mcmc  metropolis-hastings  optimization  r  logistic  feature-selection  separation  clustering  k-means  normal-distribution  gaussian-mixture  kullback-leibler  java  spark-mllib  data-visualization  categorical-data  barplot  hypothesis-testing  statistical-significance  chi-squared  type-i-and-ii-errors  pca  scikit-learn  conditional-expectation  statistical-significance  meta-analysis  intuition  r  time-series  multivariate-analysis  garch  machine-learning  classification  data-mining  missing-data  cart  regression  cross-validation  matrix-decomposition  categorical-data  repeated-measures  chi-squared  assumptions  contingency-tables  prediction  binary-data  trend  test-for-trend  matrix-inverse  anova  categorical-data  regression-coefficients  standard-error  r  distributions  exponential  interarrival-time  copula  log-likelihood  time-series  forecasting  prediction-interval  mean  standard-error  meta-analysis  meta-regression  network-meta-analysis  systematic-review  normal-distribution  multiple-regression  generalized-linear-model  poisson-distribution  poisson-regression  r  sas  cohens-kappa 


1
Facteur d'inflation de la variance pour les modèles additifs généralisés
Dans le calcul VIF habituel pour une régression linéaire, chaque variable indépendante / explicative est traitée comme la variable dépendante dans une régression des moindres carrés ordinaires. c'est à direXjXjX_j Xj=β0+∑i=1,i≠jnβiXiXj=β0+∑i=1,i≠jnβiXi X_j = \beta_0 + \sum_{i=1, i \neq j}^n \beta_i X_i Les valeurs sont stockées pour chacune des régressions et …


En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.