Questions marquées «estimators»

Une règle pour calculer une estimation d'une quantité donnée basée sur des données observées [Wikipedia].



1
Régression quantile: quelles erreurs-types?
La summary.rqfonction de la vignette quantreg fournit une multitude de choix pour les estimations d'erreur standard des coefficients de régression quantile. Quels sont les scénarios spéciaux où chacun devient optimal / souhaitable? "rang" qui produit des intervalles de confiance pour les paramètres estimés en inversant un test de rang tel …



3

2
Corrélation entre les estimateurs OLS pour l'interception et la pente
Dans un modèle de régression simple, y=β0+β1x+ε,y=β0+β1x+ε, y = \beta_0 + \beta_1 x + \varepsilon, les estimateurs OLS et sont corrélés.ββ^OLS0β^0OLS\hat{\beta}_0^{OLS}β^OLS1β^1OLS\hat{\beta}_1^{OLS} La formule de la corrélation entre les deux estimateurs est (si je l'ai dérivée correctement): Corr(β^OLS0,β^OLS1)=−∑ni=1xin−−√∑ni=1x2i−−−−−−−√.Corr⁡(β^0OLS,β^1OLS)=−∑i=1nxin∑i=1nxi2. \operatorname{Corr}(\hat{\beta}_0^{OLS},\hat{\beta}_1^{OLS}) = \frac{-\sum_{i=1}^{n}x_i}{\sqrt{n} \sqrt{\sum_{i=1}^{n}x_i^2} }. Des questions: Quelle est l'explication intuitive de la …

2
Ratatinée
Il y a eu une certaine confusion dans ma tête au sujet de deux types d'estimateurs de la valeur de la population du coefficient de corrélation de Pearson. A. Fisher (1915) a montré que pour la population normale bivariée, empirique est un estimateur à biais négatif de ρ , bien …


1
Ensembles de données de type Anscombe avec le même tracé de boîte et de moustaches (moyenne / std / médiane / MAD / min / max)
EDIT: Comme cette question a été gonflée, un résumé: trouver différents ensembles de données significatifs et interprétables avec les mêmes statistiques mixtes (moyenne, médiane, milieu de gamme et leurs dispersions associées, et régression). Le quatuor Anscombe (voir Objectif de visualiser des données de grande dimension? ) Est un exemple célèbre …




1
Quand la probabilité maximale et la méthode des moments produisent-elles les mêmes estimateurs?
On m'a posé cette question l'autre jour et je ne l'avais jamais envisagée auparavant. Mon intuition vient des avantages de chaque estimateur. La probabilité maximale est de préférence lorsque nous sommes confiants dans le processus de génération de données car, contrairement à la méthode des moments, elle utilise la connaissance …

1
Quelle est l'intuition derrière les échantillons échangeables sous l'hypothèse nulle?
Les tests de permutation (également appelés test de randomisation, test de re-randomisation ou test exact) sont très utiles et s'avèrent utiles lorsque l'hypothèse de distribution normale requise par exemple t-testn'est pas remplie et lorsque la transformation des valeurs par classement des un test non paramétrique comme Mann-Whitney-U-testcela entraînerait la perte …
15 hypothesis-testing  permutation-test  exchangeability  r  statistical-significance  loess  data-visualization  normal-distribution  pdf  ggplot2  kernel-smoothing  probability  self-study  expected-value  normal-distribution  prior  correlation  time-series  regression  heteroscedasticity  estimation  estimators  fisher-information  data-visualization  repeated-measures  binary-data  panel-data  mathematical-statistics  coefficient-of-variation  normal-distribution  order-statistics  regression  machine-learning  one-class  probability  estimators  forecasting  prediction  validation  finance  measurement-error  variance  mean  spatial  monte-carlo  data-visualization  boxplot  sampling  uniform  chi-squared  goodness-of-fit  probability  mixture  theory  gaussian-mixture  regression  statistical-significance  p-value  bootstrap  regression  multicollinearity  correlation  r  poisson-distribution  survival  regression  categorical-data  ordinal-data  ordered-logit  regression  interaction  time-series  machine-learning  forecasting  cross-validation  binomial  multiple-comparisons  simulation  false-discovery-rate  r  clustering  frequency  wilcoxon-mann-whitney  wilcoxon-signed-rank  r  svm  t-test  missing-data  excel  r  numerical-integration  r  random-variable  lme4-nlme  mixed-model  weighted-regression  power-law  errors-in-variables  machine-learning  classification  entropy  information-theory  mutual-information 

En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.