Questions marquées «elastic-net»

Une méthode de régularisation pour les modèles de régression qui combine les pénalités du lasso et de la régression des crêtes.

1
LARS vs descente coordonnée pour le lasso
Quels sont les avantages et les inconvénients de l'utilisation de LARS [1] par rapport à l'utilisation de la descente de coordonnées pour ajuster la régression linéaire régularisée L1? Je m'intéresse principalement aux aspects de performance (mes problèmes ont tendance à avoir Ndes centaines de milliers et p<20). Cependant, toute autre …

1
Différences entre PROC Mixed et lme / lmer en R - degrés de liberté
Remarque: cette question est une rediffusion, car ma question précédente a dû être supprimée pour des raisons juridiques. En comparant PROC MIXED de SAS avec la fonction lmedu nlmepackage dans R, je suis tombé sur des différences assez confuses. Plus précisément, les degrés de liberté dans les différents tests diffèrent …
12 r  mixed-model  sas  degrees-of-freedom  pdf  unbiased-estimator  distance-functions  functional-data-analysis  hellinger  time-series  outliers  c++  relative-risk  absolute-risk  rare-events  regression  t-test  multiple-regression  survival  teaching  multiple-regression  regression  self-study  t-distribution  machine-learning  recommender-system  self-study  binomial  standard-deviation  data-visualization  r  predictive-models  pearson-r  spearman-rho  r  regression  modeling  r  categorical-data  data-visualization  ggplot2  many-categories  machine-learning  cross-validation  weka  microarray  variance  sampling  monte-carlo  regression  cross-validation  model-selection  feature-selection  elastic-net  distance-functions  information-theory  r  regression  mixed-model  random-effects-model  fixed-effects-model  dataset  data-mining 


3
Lasso contre Lasso adaptatif
LASSO et LASSO adaptatif sont deux choses différentes, non? (Pour moi, les pénalités sont différentes, mais je vérifie simplement si je manque quelque chose.) Quand on parle généralement de filet élastique, est-ce le cas particulier LASSO ou LASSO adaptatif? Lequel le paquet glmnet fait-il, à condition de choisir alpha = …


1
Différence entre ElasticNet en scythit-learn Python et Glmnet en R
Quelqu'un a-t-il essayé de vérifier si l'ajustement d'un modèle Elastic Net avec ElasticNetin scikit-learn en Python et glmneten R sur le même ensemble de données produit des résultats arithmétiques identiques? J'ai expérimenté de nombreuses combinaisons de paramètres (car les deux fonctions diffèrent dans les valeurs par défaut qu'elles transmettent aux …

2
Pourquoi la régression des crêtes ne peut-elle pas offrir une meilleure interprétabilité que LASSO?
J'ai déjà une idée des avantages et des inconvénients de la régression des crêtes et du LASSO. Pour le LASSO, le terme de pénalité L1 donnera un vecteur de coefficient clairsemé, qui peut être considéré comme une méthode de sélection de caractéristiques. Cependant, il existe certaines limitations pour le LASSO. …


1
Réplication des résultats de la régression linéaire glmnet à l'aide d'un optimiseur générique
Comme l'indique le titre, j'essaie de reproduire les résultats de glmnet linear en utilisant l'optimiseur LBFGS de la bibliothèque lbfgs. Cet optimiseur nous permet d'ajouter un terme de régularisateur L1 sans avoir à se soucier de la différentiabilité, tant que notre fonction objectif (sans le terme de régularisateur L1) est …

3
Confusion liée au filet élastique
Je lisais cet article sur le filet élastique. Ils disent qu'ils utilisent un filet élastique parce que si nous utilisons simplement le Lasso, il a tendance à sélectionner un seul prédicteur parmi les prédicteurs qui sont fortement corrélés. Mais n'est-ce pas ce que nous voulons. Je veux dire que cela …

1
Méthodes pénalisées pour les données catégorielles: combiner les niveaux dans un facteur
Les modèles pénalisés peuvent être utilisés pour estimer les modèles où le nombre de paramètres est égal ou même supérieur à la taille de l'échantillon. Cette situation peut se produire dans les modèles log-linéaires de grandes tables clairsemées de données catégorielles ou de dénombrement. Dans ces paramètres, il est souvent …

2
Calculer la courbe ROC pour les données
Donc, j'ai 16 essais dans lesquels j'essaie d'authentifier une personne à partir d'un trait biométrique en utilisant Hamming Distance. Mon seuil est fixé à 3,5. Mes données sont ci-dessous et seul l'essai 1 est un vrai positif: Trial Hamming Distance 1 0.34 2 0.37 3 0.34 4 0.29 5 0.55 …
9 mathematical-statistics  roc  classification  cross-validation  pac-learning  r  anova  survival  hazard  machine-learning  data-mining  hypothesis-testing  regression  random-variable  non-independent  normal-distribution  approximation  central-limit-theorem  interpolation  splines  distributions  kernel-smoothing  r  data-visualization  ggplot2  distributions  binomial  random-variable  poisson-distribution  simulation  kalman-filter  regression  lasso  regularization  lme4-nlme  model-selection  aic  r  mcmc  dlm  particle-filter  r  panel-data  multilevel-analysis  model-selection  entropy  graphical-model  r  distributions  quantiles  qq-plot  svm  matlab  regression  lasso  regularization  entropy  inference  r  distributions  dataset  algorithms  matrix-decomposition  regression  modeling  interaction  regularization  expected-value  exponential  gamma-distribution  mcmc  gibbs  probability  self-study  normality-assumption  naive-bayes  bayes-optimal-classifier  standard-deviation  classification  optimization  control-chart  engineering-statistics  regression  lasso  regularization  regression  references  lasso  regularization  elastic-net  r  distributions  aggregation  clustering  algorithms  regression  correlation  modeling  distributions  time-series  standard-deviation  goodness-of-fit  hypothesis-testing  statistical-significance  sample  binary-data  estimation  random-variable  interpolation  distributions  probability  chi-squared  predictor  outliers  regression  modeling  interaction 

1
Plage de lambda en régression nette élastique
\def\l{|\!|} Étant donné la régression nette élastique minb12||y−Xb||2+αλ||b||22+(1−α)λ||b||1minb12||y−Xb||2+αλ||b||22+(1−α)λ||b||1\min_b \frac{1}{2}\l y - Xb \l^2 + \alpha\lambda \l b\l_2^2 + (1 - \alpha) \lambda \l b\l_1 comment choisir une plage appropriée de λλ\lambda pour la validation croisée? Dans le cas α=1α=1\alpha=1 (régression de crête), la formule dof=∑js2js2j+λdof=∑jsj2sj2+λ\textrm{dof} = \sum_j \frac{s_j^2}{s_j^2+\lambda} peut être …

1
Quelle est la bonne façon d'écrire le filet élastique?
Je suis confus quant à la bonne façon d'écrire le filet élastique. Après avoir lu certains documents de recherche, il semble y avoir trois formes 1)exp{−λ1|βk|−λ2β2k}exp⁡{−λ1|βk|−λ2βk2}\exp\{-\lambda_1|\beta_k|-\lambda_2\beta_k^2\} 2)exp{−(λ1|βk|+λ2β2k)σ2√}exp⁡{−(λ1|βk|+λ2βk2)σ2}\exp\{-\frac{(\lambda_1|\beta_k|+\lambda_2\beta_k^2)}{\sqrt{\sigma^2}}\} 3)exp{−(λ1|βk|+λ2β2k)2σ2}exp⁡{−(λ1|βk|+λ2βk2)2σ2}\exp\{-\frac{(\lambda_1|\beta_k|+\lambda_2\beta_k^2)}{2\sigma^2}\} Je ne comprends tout simplement pas la bonne façon d'ajouter . L'une des expressions ci-dessus est-elle correcte?σ2σ2\sigma^2

1
Des inconvénients du filet élastique par rapport au lasso?
Quels sont les inconvénients de l'utilisation d'un filet élastique par rapport au lasso. Je sais que le filet élastique est capable de sélectionner des groupes de variables lorsqu'ils sont fortement corrélés. Il n'a pas le problème de sélectionner plus de nnnprédicteurs lorsque . Alors que le lasso sature lorsque .p≫np≫np …

En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.