Questions marquées «separation»

La séparation se produit lorsque certaines classes d'un résultat catégoriel peuvent être parfaitement distinguées par une combinaison linéaire d'autres variables.



2
Le modèle de régression logistique ne converge pas
J'ai quelques données sur les vols des compagnies aériennes (dans une trame de données appelée flights) et j'aimerais voir si le temps de vol a un effet sur la probabilité d'une arrivée considérablement retardée (c'est-à-dire 10 minutes ou plus). Je pensais utiliser une régression logistique, avec le temps de vol …
40 r  logistic  separation 




1
Existe-t-il une explication intuitive de la raison pour laquelle la régression logistique ne fonctionnera pas pour un cas de séparation parfait? Et pourquoi l'ajout de la régularisation le corrigera?
Nous avons beaucoup de bonnes discussions sur la séparation parfaite dans la régression logistique. Telles que, la régression logistique dans R a conduit à une séparation parfaite (phénomène de Hauck-Donner). Maintenant quoi? et le modèle de régression logistique ne converge pas . Personnellement, je pense toujours que ce n'est pas …


1
Package GBM vs Caret utilisant GBM
J'ai ajusté le modèle à l'aide caret, mais j'ai ensuite réexécuté le modèle à l'aide du gbmpackage. Je crois comprendre que le caretpackage utilise gbmet que la sortie doit être la même. Cependant, un simple test rapide utilisant data(iris)montre une différence dans le modèle d'environ 5% en utilisant RMSE et …



1
R / mgcv: Pourquoi les produits tenseurs te () et ti () produisent-ils des surfaces différentes?
Le mgcvpackage pour Ra deux fonctions pour ajuster les interactions des produits tensoriels: te()et ti(). Je comprends la division de base du travail entre les deux (ajustement d'une interaction non linéaire vs décomposition de cette interaction en effets principaux et interaction). Ce que je ne comprends pas, c'est pourquoi te(x1, …
11 r  gam  mgcv  conditional-probability  mixed-model  references  bayesian  estimation  conditional-probability  machine-learning  optimization  gradient-descent  r  hypothesis-testing  wilcoxon-mann-whitney  time-series  bayesian  inference  change-point  time-series  anova  repeated-measures  statistical-significance  bayesian  contingency-tables  regression  prediction  quantiles  classification  auc  k-means  scikit-learn  regression  spatial  circular-statistics  t-test  effect-size  cohens-d  r  cross-validation  feature-selection  caret  machine-learning  modeling  python  optimization  frequentist  correlation  sample-size  normalization  group-differences  heteroscedasticity  independence  generalized-least-squares  lme4-nlme  references  mcmc  metropolis-hastings  optimization  r  logistic  feature-selection  separation  clustering  k-means  normal-distribution  gaussian-mixture  kullback-leibler  java  spark-mllib  data-visualization  categorical-data  barplot  hypothesis-testing  statistical-significance  chi-squared  type-i-and-ii-errors  pca  scikit-learn  conditional-expectation  statistical-significance  meta-analysis  intuition  r  time-series  multivariate-analysis  garch  machine-learning  classification  data-mining  missing-data  cart  regression  cross-validation  matrix-decomposition  categorical-data  repeated-measures  chi-squared  assumptions  contingency-tables  prediction  binary-data  trend  test-for-trend  matrix-inverse  anova  categorical-data  regression-coefficients  standard-error  r  distributions  exponential  interarrival-time  copula  log-likelihood  time-series  forecasting  prediction-interval  mean  standard-error  meta-analysis  meta-regression  network-meta-analysis  systematic-review  normal-distribution  multiple-regression  generalized-linear-model  poisson-distribution  poisson-regression  r  sas  cohens-kappa 

1
D'énormes coefficients de régression logistique - qu'est-ce que cela signifie et que faire?
J'obtiens d'énormes coefficients lors de la régression logistique, voir les coefficients avec krajULKV: > summary(m5) Call: glm(formula = cbind(ml, ad) ~ rok + obdobi + kraj + resid_usili2 + rok:obdobi + rok:kraj + obdobi:kraj + kraj:resid_usili2 + rok:obdobi:kraj, family = "quasibinomial") Deviance Residuals: Min 1Q Median 3Q Max -2.7796 -1.0958 …


2
Est-il possible de simuler une régression logistique sans hasard?
Nous pouvons simuler une régression linéaire sans caractère aléatoire, ce qui signifie que nous faisons au lieu de . Ensuite, si nous ajustons un modèle linéaire, les coefficients seront identiques à la "vérité fondamentale". Voici un exemple.y=Xβy=Xβy=X\betay=Xβ+ϵy=Xβ+ϵy=X\beta+\epsilon set.seed(0) n <- 1e5 p <- 3 X <- matrix(rnorm(n*p), ncol=p) beta <- …

En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.