Questions marquées «nonparametric»

Utilisez cette balise pour poser des questions sur la nature des méthodes non paramétriques ou paramétriques, ou la différence entre les deux. Les méthodes non paramétriques reposent généralement sur peu d'hypothèses sur les distributions sous-jacentes, tandis que les méthodes paramétriques font des hypothèses qui permettent de décrire les données par un petit nombre de paramètres.






1
estimation de la densité du noyau du paquet np avec le noyau Epanechnikov
Je travaille avec l'ensemble de données "geyser" du package MASS et compare les estimations de densité du noyau du package np. Mon problème est de comprendre l'estimation de la densité en utilisant la validation croisée des moindres carrés et le noyau Epanechnikov: blep<-npudensbw(~geyser$waiting,bwmethod="cv.ls",ckertype="epanechnikov") plot(npudens(bws=blep)) Pour le noyau gaussien, cela semble …



1
Comment s'effectue exactement la contrainte de centrage (ou moyenne) des splines (également par rapport à mgcv)?
Le processus de génération de données est: y=sin(x+I(d=0))+sin(x+4∗I(d=1))+I(d=0)z2+3I(d=1)z2+N(0,1)y=sin(x+I(d=0))+sin(x+4∗I(d=1))+I(d=0)z2+3I(d=1)z2+N(0,1)y = \text{sin}\Big(x+I(d=0)\Big) + \text{sin}\Big(x+4*I(d=1)\Big) + I(d=0)z^2 + 3I(d=1)z^2 + \mathbb{N}\left(0,1\right) Soit une suite de à de longueur et le facteur correspondant . Prenez toutes les combinaisons possibles de pour calculer : x,zx,zx,z−4−4-4444100100100dddd∈{0,1}d∈{0,1}d\in\{0,1\}x,z,dx,z,dx,z,dyyy L'utilisation de la base B-spline (non centrée) pour pour chaque …


1
Identification causale et splines pénalisées
Je viens de recevoir un rejet d'un journal économique. Parmi les raisons invoquées pour le rejet figurent: les avantages de l'utilisation de la méthode semi-paramétrique ne sont pas clairement mis en évidence par rapport à d'autres techniques plus simples avec une identification claire des relations causales Il est certainement possible …

2
Test post-hoc après mesures répétées à 2 facteurs ANOVA dans R?
J'ai des problèmes à trouver une solution concernant la façon d'exécuter un test post-hoc (Tukey HSD) après une ANOVA à mesures répétées à 2 facteurs (tous deux intra-sujets) en R. Pour l'ANOVA, j'ai utilisé la fonction aov: summary(aov(dv ~ x1 * x2 + Error(subject/(x1*x2)), data=df1)) Après avoir lu les réponses …

3
Test post hoc dans une conception mixte 2x3 ANOVA utilisant SPSS?
J'ai deux groupes de 10 participants qui ont été évalués trois fois au cours d'une expérience. Pour tester les différences entre les groupes et entre les trois évaluations, j'ai exécuté une ANOVA de conception mixte 2x3 avec group(contrôle, expérimental), time(premier, deuxième, trois) et group x time. Les deux timeet grouprésulté …
8 anova  mixed-model  spss  post-hoc  bonferroni  time-series  unevenly-spaced-time-series  classification  normal-distribution  discriminant-analysis  probability  normal-distribution  estimation  sampling  classification  svm  terminology  pivot-table  random-generation  self-study  estimation  sampling  estimation  categorical-data  maximum-likelihood  excel  least-squares  instrumental-variables  2sls  total-least-squares  correlation  self-study  variance  unbiased-estimator  bayesian  mixed-model  ancova  statistical-significance  references  p-value  fishers-exact  probability  monte-carlo  particle-filter  logistic  predictive-models  modeling  interaction  survey  hypothesis-testing  multiple-regression  regression  variance  data-transformation  residuals  minitab  r  time-series  forecasting  arima  garch  correlation  estimation  least-squares  bias  pca  predictive-models  genetics  sem  partial-least-squares  nonparametric  ordinal-data  wilcoxon-mann-whitney  bonferroni  wilcoxon-signed-rank  traminer  regression  econometrics  standard-error  robust  misspecification  r  probability  logistic  generalized-linear-model  r-squared  effect-size  gee  ordered-logit  bayesian  classification  svm  kernel-trick  nonlinear  bayesian  pca  dimensionality-reduction  eigenvalues  probability  distributions  mathematical-statistics  estimation  nonparametric  kernel-smoothing  expected-value  filter  mse  time-series  correlation  data-visualization  clustering  estimation  predictive-models  recommender-system  sparse  hypothesis-testing  data-transformation  parametric  probability  summations  correlation  pearson-r  spearman-rho  bayesian  replicability  dimensionality-reduction  discriminant-analysis  outliers  weka 

2
Non paramétrique pour ANOVA bidirectionnelle (3x3)
Ma variable dépendante est continue, non normale (asymétrique à gauche selon le test de Shapiro-Wilk). J'ai deux variables indépendantes (groupe de traitement par couleur, type d'aliment). Il y a 3 niveaux dans chaque variable indépendante. Le nombre d'observations pour chaque variable indépendante n'est pas égal. J'ai recherché des tests non …


En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.