Questions marquées «model-selection»

La sélection des modèles est un problème pour juger quel modèle d'un ensemble donne les meilleurs résultats. Les méthodes populaires incluentR2, Critères AIC et BIC, ensembles de tests et validation croisée. Dans une certaine mesure, la sélection des fonctionnalités est un sous-problème de la sélection des modèles.


3
Analyser les tracés ACF et PACF
Je veux voir si je suis sur la bonne voie en analysant mes parcelles ACF et PACF: Contexte: (Reff: Philip Hans Franses, 1998) Comme ACF et PACF affichent des valeurs significatives, je suppose qu'un modèle ARMA répondra à mes besoins L'ACF peut être utilisé pour estimer la partie MA, c'est-à-dire …



4
Comment projeter un nouveau vecteur sur l'espace PCA?
Après avoir effectué l'analyse des composants principaux (PCA), je souhaite projeter un nouveau vecteur sur l'espace PCA (c'est-à-dire trouver ses coordonnées dans le système de coordonnées PCA). J'ai calculé PCA en langage R en utilisant prcomp. Maintenant, je devrais pouvoir multiplier mon vecteur par la matrice de rotation PCA. Les …
21 r  pca  r  variance  heteroscedasticity  misspecification  distributions  time-series  data-visualization  modeling  histogram  kolmogorov-smirnov  negative-binomial  likelihood-ratio  econometrics  panel-data  categorical-data  scales  survey  distributions  pdf  histogram  correlation  algorithms  r  gpu  parallel-computing  approximation  mean  median  references  sample-size  normality-assumption  central-limit-theorem  rule-of-thumb  confidence-interval  estimation  mixed-model  psychometrics  random-effects-model  hypothesis-testing  sample-size  dataset  large-data  regression  standard-deviation  variance  approximation  hypothesis-testing  variance  central-limit-theorem  kernel-trick  kernel-smoothing  error  sampling  hypothesis-testing  normality-assumption  philosophical  confidence-interval  modeling  model-selection  experiment-design  hypothesis-testing  statistical-significance  power  asymptotics  information-retrieval  anova  multiple-comparisons  ancova  classification  clustering  factor-analysis  psychometrics  r  sampling  expectation-maximization  markov-process  r  data-visualization  correlation  regression  statistical-significance  degrees-of-freedom  experiment-design  r  regression  curve-fitting  change-point  loess  machine-learning  classification  self-study  monte-carlo  markov-process  references  mathematical-statistics  data-visualization  python  cart  boosting  regression  classification  robust  cart  survey  binomial  psychometrics  likert  psychology  asymptotics  multinomial 

6
Quand supprimer un terme d'un modèle de régression?
Quelqu'un pourrait-il indiquer si ce qui suit est logique: J'ai affaire à un modèle linéaire ordinaire avec 4 prédicteurs. Je suis dans deux esprits s'il faut abandonner le terme le moins significatif. Sa valeur est un peu plus de 0,05. J'ai plaidé en faveur de l'abandon dans ces conditions: multiplier …

4
Quelles sont les valeurs correctes pour la précision et le rappel dans les cas de bord?
La précision est définie comme: p = true positives / (true positives + false positives) Est - il exact que, true positiveset false positivesapproche 0, la précision approche 1? Même question pour rappel: r = true positives / (true positives + false negatives) J'implémente actuellement un test statistique où j'ai …
20 precision-recall  data-visualization  logarithm  references  r  networks  data-visualization  standard-deviation  probability  binomial  negative-binomial  r  categorical-data  aggregation  plyr  survival  python  regression  r  t-test  bayesian  logistic  data-transformation  confidence-interval  t-test  interpretation  distributions  data-visualization  pca  genetics  r  finance  maximum  probability  standard-deviation  probability  r  information-theory  references  computational-statistics  computing  references  engineering-statistics  t-test  hypothesis-testing  independence  definition  r  censoring  negative-binomial  poisson-distribution  variance  mixed-model  correlation  intraclass-correlation  aggregation  interpretation  effect-size  hypothesis-testing  goodness-of-fit  normality-assumption  small-sample  distributions  regression  normality-assumption  t-test  anova  confidence-interval  z-statistic  finance  hypothesis-testing  mean  model-selection  information-geometry  bayesian  frequentist  terminology  type-i-and-ii-errors  cross-validation  smoothing  splines  data-transformation  normality-assumption  variance-stabilizing  r  spss  stata  python  correlation  logistic  logit  link-function  regression  predictor  pca  factor-analysis  r  bayesian  maximum-likelihood  mcmc  conditional-probability  statistical-significance  chi-squared  proportion  estimation  error  shrinkage  application  steins-phenomenon 

2
La régularisation peut-elle être utile si nous ne nous intéressons qu'à la modélisation, pas aux prévisions?
La régularisation peut-elle être utile si nous nous intéressons uniquement à l'estimation (et à l'interprétation) des paramètres du modèle, pas à la prévision ou à la prédiction? Je vois à quel point la régularisation / validation croisée est extrêmement utile si votre objectif est de faire de bonnes prévisions sur …

2
Comment choisir une structure à effets aléatoires et fixes dans des modèles mixtes linéaires?
Considérez les données suivantes à partir d'une conception bidirectionnelle des sujets: df <- "http://personality-project.org/r/datasets/R.appendix4.data" df <- read.table(df,header=T) head(df) Observation Subject Task Valence Recall 1 1 Jim Free Neg 8 2 2 Jim Free Neu 9 3 3 Jim Free Pos 5 4 4 Jim Cued Neg 7 5 5 Jim …

7
Mesures de la complexité du modèle
Comment comparer la complexité de deux modèles avec le même nombre de paramètres? Edit 19/19 : Pour clarifier, la complexité du modèle est une mesure de la difficulté d'apprendre à partir de données limitées. Lorsque deux modèles correspondent aussi bien aux données existantes, un modèle avec une complexité moindre donnera …


4
Déterminer la meilleure fonction d'ajustement de courbe d'ajustement à partir de fonctions linéaires, exponentielles et logarithmiques
Le contexte: À partir d'une question sur Mathematics Stack Exchange (Puis-je créer un programme) , quelqu'un a un ensemble de points et veut y adapter une courbe, linéaire, exponentielle ou logarithmique. La méthode habituelle consiste à commencer par choisir l'un d'entre eux (qui spécifie le modèle), puis à effectuer les …

1
BIC essaie-t-il de trouver un vrai modèle?
Cette question est un suivi ou une tentative de dissiper une confusion possible concernant un sujet que beaucoup d'autres trouvent un peu difficile, en ce qui concerne la différence entre AIC et BIC. Dans une très belle réponse de @Dave Kellen sur ce sujet ( /stats//a/767/30589 ), nous lisons: Votre …


1
Les modèles résiduels autocorrélés restent-ils même dans les modèles avec des structures de corrélation appropriées, et comment sélectionner les meilleurs modèles?
Le contexte Cette question utilise R, mais concerne des problèmes statistiques généraux. J'analyse les effets des facteurs de mortalité (% de mortalité due aux maladies et au parasitisme) sur le taux de croissance de la population de papillons au fil du temps, où les populations de larves ont été échantillonnées …

En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.