Questions marquées «gaussian-mixture»

Un type de distribution mixte ou de modèle qui suppose que les sous-populations suivent des distributions gaussiennes.



2
Algorithme EM implémenté manuellement
Je veux implémenter l'algorithme EM manuellement, puis le comparer aux résultats normalmixEMdu mixtoolspackage. Bien sûr, je serais heureux si les deux aboutissaient aux mêmes résultats. La référence principale est Geoffrey McLachlan (2000), Finite Mixture Models . J'ai une densité de mélange de deux gaussiens, sous forme générale, la log-vraisemblance est …

2
Pourquoi l'optimisation d'un mélange de gaussien directement est-elle difficile à calculer?
Considérez la probabilité logarithmique d'un mélange de gaussiens: l(Sn;θ)=∑t=1nlogf(x(t)|θ)=∑t=1nlog{∑i=1kpif(x(t)|μ(i),σ2i)}l(Sn;θ)=∑t=1nlog⁡f(x(t)|θ)=∑t=1nlog⁡{∑i=1kpif(x(t)|μ(i),σi2)}l(S_n; \theta) = \sum^n_{t=1}\log f(x^{(t)}|\theta) = \sum^n_{t=1}\log\left\{\sum^k_{i=1}p_i f(x^{(t)}|\mu^{(i)}, \sigma^2_i)\right\} Je me demandais pourquoi il était difficile de calculer directement cette équation? Je cherchais soit une claire intuition solide sur pourquoi il devrait être évident que c'est difficile, soit peut-être une explication plus …

2
Pourquoi la maximisation des attentes est importante pour les modèles de mélange?
De nombreuses publications mettent l'accent sur la méthode de maximisation des attentes sur les modèles de mélange (mélange de gaussien, modèle de Markov caché, etc.). Pourquoi l'EM est important? EM est juste un moyen d'optimisation et n'est pas largement utilisé comme méthode basée sur un gradient (gradient décent ou méthode …


1
Quelle est l'intuition derrière les échantillons échangeables sous l'hypothèse nulle?
Les tests de permutation (également appelés test de randomisation, test de re-randomisation ou test exact) sont très utiles et s'avèrent utiles lorsque l'hypothèse de distribution normale requise par exemple t-testn'est pas remplie et lorsque la transformation des valeurs par classement des un test non paramétrique comme Mann-Whitney-U-testcela entraînerait la perte …
15 hypothesis-testing  permutation-test  exchangeability  r  statistical-significance  loess  data-visualization  normal-distribution  pdf  ggplot2  kernel-smoothing  probability  self-study  expected-value  normal-distribution  prior  correlation  time-series  regression  heteroscedasticity  estimation  estimators  fisher-information  data-visualization  repeated-measures  binary-data  panel-data  mathematical-statistics  coefficient-of-variation  normal-distribution  order-statistics  regression  machine-learning  one-class  probability  estimators  forecasting  prediction  validation  finance  measurement-error  variance  mean  spatial  monte-carlo  data-visualization  boxplot  sampling  uniform  chi-squared  goodness-of-fit  probability  mixture  theory  gaussian-mixture  regression  statistical-significance  p-value  bootstrap  regression  multicollinearity  correlation  r  poisson-distribution  survival  regression  categorical-data  ordinal-data  ordered-logit  regression  interaction  time-series  machine-learning  forecasting  cross-validation  binomial  multiple-comparisons  simulation  false-discovery-rate  r  clustering  frequency  wilcoxon-mann-whitney  wilcoxon-signed-rank  r  svm  t-test  missing-data  excel  r  numerical-integration  r  random-variable  lme4-nlme  mixed-model  weighted-regression  power-law  errors-in-variables  machine-learning  classification  entropy  information-theory  mutual-information 

5
Problèmes de singularité dans le modèle de mélange gaussien
Dans le chapitre 9 du livre Reconnaissance de formes et apprentissage automatique, il y a cette partie sur le modèle de mélange gaussien: Pour être honnête, je ne comprends pas vraiment pourquoi cela créerait une singularité. Quelqu'un peut-il m'expliquer cela? Je suis désolé mais je suis juste un étudiant de …





1
Sélection du modèle Mclust
Le package R mclustutilise BIC comme critère de sélection de modèle de cluster. D'après ma compréhension, un modèle avec le BIC le plus bas devrait être sélectionné par rapport aux autres modèles (si vous ne vous souciez que du BIC). Cependant, lorsque les valeurs BIC sont toutes négatives, la Mclustfonction …

1
R / mgcv: Pourquoi les produits tenseurs te () et ti () produisent-ils des surfaces différentes?
Le mgcvpackage pour Ra deux fonctions pour ajuster les interactions des produits tensoriels: te()et ti(). Je comprends la division de base du travail entre les deux (ajustement d'une interaction non linéaire vs décomposition de cette interaction en effets principaux et interaction). Ce que je ne comprends pas, c'est pourquoi te(x1, …
11 r  gam  mgcv  conditional-probability  mixed-model  references  bayesian  estimation  conditional-probability  machine-learning  optimization  gradient-descent  r  hypothesis-testing  wilcoxon-mann-whitney  time-series  bayesian  inference  change-point  time-series  anova  repeated-measures  statistical-significance  bayesian  contingency-tables  regression  prediction  quantiles  classification  auc  k-means  scikit-learn  regression  spatial  circular-statistics  t-test  effect-size  cohens-d  r  cross-validation  feature-selection  caret  machine-learning  modeling  python  optimization  frequentist  correlation  sample-size  normalization  group-differences  heteroscedasticity  independence  generalized-least-squares  lme4-nlme  references  mcmc  metropolis-hastings  optimization  r  logistic  feature-selection  separation  clustering  k-means  normal-distribution  gaussian-mixture  kullback-leibler  java  spark-mllib  data-visualization  categorical-data  barplot  hypothesis-testing  statistical-significance  chi-squared  type-i-and-ii-errors  pca  scikit-learn  conditional-expectation  statistical-significance  meta-analysis  intuition  r  time-series  multivariate-analysis  garch  machine-learning  classification  data-mining  missing-data  cart  regression  cross-validation  matrix-decomposition  categorical-data  repeated-measures  chi-squared  assumptions  contingency-tables  prediction  binary-data  trend  test-for-trend  matrix-inverse  anova  categorical-data  regression-coefficients  standard-error  r  distributions  exponential  interarrival-time  copula  log-likelihood  time-series  forecasting  prediction-interval  mean  standard-error  meta-analysis  meta-regression  network-meta-analysis  systematic-review  normal-distribution  multiple-regression  generalized-linear-model  poisson-distribution  poisson-regression  r  sas  cohens-kappa 


En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.