Je ne suis pas à l'aise avec les informations de Fisher, ce qu'elles mesurent et en quoi elles sont utiles. De plus, sa relation avec la borne Cramer-Rao ne m'est pas apparente. Quelqu'un peut-il s'il vous plaît donner une explication intuitive de ces concepts?
Ok, c'est une question assez fondamentale, mais je suis un peu confus. Dans ma thèse j'écris: Les erreurs types peuvent être trouvées en calculant l'inverse de la racine carrée des éléments diagonaux de la matrice (observée) de Fisher Information: -logLI(μ,σ2)=H-1sμ^,σ^2=1I(μ^,σ^2)−−−−−−√sμ^,σ^2=1I(μ^,σ^2)\begin{align*} s_{\hat{\mu},\hat{\sigma}^2}=\frac{1}{\sqrt{\mathbf{I}(\hat{\mu},\hat{\sigma}^2)}} \end{align*} Etant donné que la commande d'optimisation dans R …
Supposons que nous ayons une variable aléatoire . Si était le vrai paramètre, la fonction de vraisemblance devrait être maximisée et la dérivée égale à zéro. C'est le principe de base de l'estimateur du maximum de vraisemblance.X∼f(x|θ)X∼f(x|θ)X \sim f(x|\theta)θ0θ0\theta_0 Si je comprends bien, les informations Fisher sont définies comme I(θ)=E[(∂∂θf(X|θ))2]I(θ)=E[(∂∂θf(X|θ))2]I(\theta) …
Compte tenu du modèle hiérarchique suivant, et, μ ~ L a p l a c e ( 0 , c ) où N ( ⋅ , ⋅ ) est une distribution normale. Existe-t-il un moyen d'obtenir une expression exacte pour les informations de Fisher de la distribution marginale de X …
Soit . La matrice d'informations de Fisher est définie comme suit:θ∈Rnθ∈Rn\theta \in R^{n} I(θ)i,j=−E[∂2log(f(X|θ))∂θi∂θj∣∣∣θ]I(θ)i,j=−E[∂2log(f(X|θ))∂θi∂θj|θ]I(\theta)_{i,j} = -E\left[\frac{\partial^{2} \log(f(X|\theta))}{\partial \theta_{i} \partial \theta_{j}}\bigg|\theta\right] Comment puis-je prouver que la matrice d'informations de Fisher est semi-définie positive?
Je republie une "réponse" à une question que j'avais posée il y a environ deux semaines: Pourquoi le Jeffreys est-il utile avant? C'était vraiment une question (et je n'avais pas non plus le droit de poster des commentaires à l'époque), donc j'espère que c'est OK de le faire: Dans le …
Dans le cadre du maximum de vraisemblance standard (iid échantillon d'une certaine distribution de densité f y ( y | θ 0 )) et dans le cas d'un modèle correctement spécifié, les informations de Fisher sont données parY1,…,YnY1,…,YnY_{1}, \ldots, Y_{n}fy(y|θ0fy(y|θ0f_{y}(y|\theta_{0} I(θ)=−Eθ0[∂2θ2lnfy(θ)]I(θ)=−Eθ0[∂2θ2lnfy(θ)]I(\theta) = -\mathbb{E}_{\theta_{0}}\left[\frac{\partial^{2}}{\theta^{2}}\ln f_{y}(\theta) \right] où l'attente est prise par …
J'essaie de prouver que la matrice d'information observée évaluée à l'estimateur du maximum de vraisemblance faiblement cohérent (MLE) est un estimateur faiblement cohérent de la matrice d'information attendue. C'est un résultat largement cité mais personne ne donne de référence ou de preuve (j'ai épuisé je pense les 20 premières pages …
Les tests de permutation (également appelés test de randomisation, test de re-randomisation ou test exact) sont très utiles et s'avèrent utiles lorsque l'hypothèse de distribution normale requise par exemple t-testn'est pas remplie et lorsque la transformation des valeurs par classement des un test non paramétrique comme Mann-Whitney-U-testcela entraînerait la perte …
Différents manuels citent différentes conditions d'existence d'une matrice d'information de Fisher. Plusieurs de ces conditions sont énumérées ci-dessous, chacune d'entre elles apparaissant dans certaines, mais pas toutes, des définitions de «matrice d'information de Fisher». Existe-t-il un ensemble standard et minimal de conditions? Parmi les 5 conditions ci-dessous, lesquelles peuvent être …
(J'ai posté une question similaire sur math.se. ) En géométrie de l'information, le déterminant de la matrice d'information de Fisher est une forme volumique naturelle sur une variété statistique, donc elle a une belle interprétation géométrique. Le fait qu'il apparaisse dans la définition d'un a priori de Jeffreys, par exemple, …
Considérons une variable aléatoire de Bernoulli avec le paramètre (probabilité de succès). La fonction de vraisemblance et les informations de Fisher (une matrice ) sont:θ 1 × 1X∈{0,1}X∈{0,1}X\in\{0,1\}θθ\theta1×11×11 \times 1 L1(θ;X)I1(θ)=p(X|θ)=θX(1−θ)1−X=detI1(θ)=1θ(1−θ)L1(θ;X)=p(X|θ)=θX(1−θ)1−XI1(θ)=detI1(θ)=1θ(1−θ) \begin{align} \mathcal{L}_1(\theta;X) &= p(\left.X\right|\theta) = \theta^{X}(1-\theta)^{1-X} \\ \mathcal{I}_1(\theta) &= \det \mathcal{I}_1(\theta) = \frac{1}{\theta(1-\theta)} \end{align} Considérons maintenant une version "sur-paramétrisée" …
Exemples: J'ai une phrase dans la description de poste: "Java senior engineer in UK". Je veux utiliser un modèle d'apprentissage profond pour le prédire en 2 catégories: English et IT jobs. Si j'utilise un modèle de classification traditionnel, il ne peut prédire qu'une seule étiquette avec softmaxfonction à la dernière …
D'après "In All Lik vraisemblance: modélisation statistique et inférence utilisant la vraisemblance" de Y. Pawitan, la probabilité d'une re-paramétrisation θ↦g(θ)=ψθ↦g(θ)=ψ\theta\mapsto g(\theta)=\psi est définie comme L∗(ψ)=max{θ:g(θ)=ψ}L(θ)L∗(ψ)=max{θ:g(θ)=ψ}L(θ) L^*(\psi)=\max_{\{\theta:g(\theta)=\psi\}} L(\theta) sorte que si ggg est un- à un, puis L∗(ψ)=L(g−1(ψ))L∗(ψ)=L(g−1(ψ))L^*(\psi)=L(g^{-1}(\psi)) (p. 45). J'essaie de montrer l'exercice 2.20 qui déclare que si θθ\theta est …
We use cookies and other tracking technologies to improve your browsing experience on our website,
to show you personalized content and targeted ads, to analyze our website traffic,
and to understand where our visitors are coming from.
By continuing, you consent to our use of cookies and other tracking technologies and
affirm you're at least 16 years old or have consent from a parent or guardian.