Questions marquées «estimation»

Cette balise est trop générale; veuillez fournir une balise plus spécifique. Pour les questions sur les propriétés d'estimateurs spécifiques, utilisez plutôt la balise [estimateurs].

2
Estimer le taux auquel l'écart-type évolue avec une variable indépendante
J'ai une expérience dans laquelle je prends des mesures d'une variable normalement distribuée OuiYY, Oui∼ N( μ , σ)Oui∼N(μ,σ)Y \sim N(\mu,\sigma) Cependant, des expériences antérieures ont fourni des preuves que l'écart-type est une fonction affine d'une variable indépendante , c'est-à-direXσσ\sigmaXXX σ= a | X| +bσ=une|X|+b\sigma = a|X| + b Oui∼ …




1
Exemple d'estimation maximale a posteriori
J'ai lu à propos de l'estimation du maximum de vraisemblance et de l'estimation maximum a posteriori et jusqu'à présent, je n'ai rencontré d'exemples concrets qu'avec l'estimation du maximum de vraisemblance. J'ai trouvé quelques exemples abstraits d'estimation maximale a posteriori, mais rien de concret pour l'instant avec des chiffres: S Cela …


2
Référence pour ?
Dans sa réponse à ma question précédente, @Erik P. donne l'expression où est l' excès de kurtosis de la distribution. Une référence à l'entrée Wikipedia sur la distribution de la variance de l'échantillon est donnée, mais la page wikipedia dit "la citation nécessaire".Var[s2]=σ4(2n−1+κn),Var[s2]=σ4(2n−1+κn), \mathrm{Var}[s^2]=\sigma^4 \left(\frac{2}{n-1} + \frac{\kappa}{n}\right) \>, κκ\kappa Ma …


1
R / mgcv: Pourquoi les produits tenseurs te () et ti () produisent-ils des surfaces différentes?
Le mgcvpackage pour Ra deux fonctions pour ajuster les interactions des produits tensoriels: te()et ti(). Je comprends la division de base du travail entre les deux (ajustement d'une interaction non linéaire vs décomposition de cette interaction en effets principaux et interaction). Ce que je ne comprends pas, c'est pourquoi te(x1, …
11 r  gam  mgcv  conditional-probability  mixed-model  references  bayesian  estimation  conditional-probability  machine-learning  optimization  gradient-descent  r  hypothesis-testing  wilcoxon-mann-whitney  time-series  bayesian  inference  change-point  time-series  anova  repeated-measures  statistical-significance  bayesian  contingency-tables  regression  prediction  quantiles  classification  auc  k-means  scikit-learn  regression  spatial  circular-statistics  t-test  effect-size  cohens-d  r  cross-validation  feature-selection  caret  machine-learning  modeling  python  optimization  frequentist  correlation  sample-size  normalization  group-differences  heteroscedasticity  independence  generalized-least-squares  lme4-nlme  references  mcmc  metropolis-hastings  optimization  r  logistic  feature-selection  separation  clustering  k-means  normal-distribution  gaussian-mixture  kullback-leibler  java  spark-mllib  data-visualization  categorical-data  barplot  hypothesis-testing  statistical-significance  chi-squared  type-i-and-ii-errors  pca  scikit-learn  conditional-expectation  statistical-significance  meta-analysis  intuition  r  time-series  multivariate-analysis  garch  machine-learning  classification  data-mining  missing-data  cart  regression  cross-validation  matrix-decomposition  categorical-data  repeated-measures  chi-squared  assumptions  contingency-tables  prediction  binary-data  trend  test-for-trend  matrix-inverse  anova  categorical-data  regression-coefficients  standard-error  r  distributions  exponential  interarrival-time  copula  log-likelihood  time-series  forecasting  prediction-interval  mean  standard-error  meta-analysis  meta-regression  network-meta-analysis  systematic-review  normal-distribution  multiple-regression  generalized-linear-model  poisson-distribution  poisson-regression  r  sas  cohens-kappa 


2
Comment estimer la précision d'une intégrale?
Une situation extrêmement courante en infographie est que la couleur d'un pixel est égale à l'intégrale d'une fonction à valeur réelle. Souvent, la fonction est trop compliquée à résoudre analytiquement, nous nous retrouvons donc avec une approximation numérique. Mais la fonction est également souvent très coûteuse à calculer, nous sommes …


1
Sur l'existence de l'UMVUE et le choix de l'estimateur de dans la population
Soit soit un échantillon aléatoire tiré de population où .(X1,X2,⋯,Xn)(X1,X2,⋯,Xn)(X_1,X_2,\cdots,X_n)N(θ,θ2)N(θ,θ2)\mathcal N(\theta,\theta^2)θ∈Rθ∈R\theta\in\mathbb R Je recherche l'UMVUE de .θθ\theta La densité conjointe de est(X1,X2,⋯,Xn)(X1,X2,⋯,Xn)(X_1,X_2,\cdots,X_n) fθ(x1,x2,⋯,xn)=∏i=1n1θ2π−−√exp[−12θ2(xi−θ)2]=1(θ2π−−√)nexp[−12θ2∑i=1n(xi−θ)2]=1(θ2π−−√)nexp[1θ∑i=1nxi−12θ2∑i=1nx2i−n2]=g(θ,T(x))h(x)∀(x1,⋯,xn)∈Rn,∀θ∈Rfθ(x1,x2,⋯,xn)=∏i=1n1θ2πexp⁡[−12θ2(xi−θ)2]=1(θ2π)nexp⁡[−12θ2∑i=1n(xi−θ)2]=1(θ2π)nexp⁡[1θ∑i=1nxi−12θ2∑i=1nxi2−n2]=g(θ,T(x))h(x)∀(x1,⋯,xn)∈Rn,∀θ∈R\begin{align} f_{\theta}(x_1,x_2,\cdots,x_n)&=\prod_{i=1}^n\frac{1}{\theta\sqrt{2\pi}}\exp\left[-\frac{1}{2\theta^2}(x_i-\theta)^2\right] \\&=\frac{1}{(\theta\sqrt{2\pi})^n}\exp\left[-\frac{1}{2\theta^2}\sum_{i=1}^n(x_i-\theta)^2\right] \\&=\frac{1}{(\theta\sqrt{2\pi})^n}\exp\left[\frac{1}{\theta}\sum_{i=1}^n x_i-\frac{1}{2\theta^2}\sum_{i=1}^nx_i^2-\frac{n}{2}\right] \\&=g(\theta,T(\mathbf x))h(\mathbf x)\qquad\forall\,(x_1,\cdots,x_n)\in\mathbb R^n\,,\forall\,\theta\in\mathbb R \end{align} , où g( θ , T( x ) ) = 1( θ 2 π√)nexp[ 1θ∑ni = 1Xje- …

2
UMVUE de lors de l'échantillonnage à partir de la population
Soit un échantillon aléatoire de la densité(X1,X2,…,Xn)(X1,X2,…,Xn)(X_1,X_2,\ldots,X_n)fθ(x)=θxθ−110<x<1,θ>0fθ(x)=θxθ−110<x<1,θ>0f_{\theta}(x)=\theta x^{\theta-1}\mathbf1_{00 J'essaie de trouver l'UMVUE de .θ1+θθ1+θ\frac{\theta}{1+\theta} La densité conjointe de est(X1,…,Xn)(X1,…,Xn)(X_1,\ldots,X_n) fθ(x1,⋯,xn)=θn(∏i=1nxi)θ−110<x1,…,xn<1=exp[(θ−1)∑i=1nlnxi+nlnθ+ln(10<x1,…,xn<1)],θ>0fθ(x1,⋯,xn)=θn(∏i=1nxi)θ−110<x1,…,xn<1=exp⁡[(θ−1)∑i=1nln⁡xi+nln⁡θ+ln⁡(10<x1,…,xn<1)],θ>0\begin{align} f_{\theta}(x_1,\cdots,x_n)&=\theta^n\left(\prod_{i=1}^n x_i\right)^{\theta-1}\mathbf1_{00 \end{align} Comme la population pdf appartient à la famille exponentielle à un paramètre, cela montre qu'une statistique complète suffisante pour estfθfθf_{\theta}θθ\thetaT(X1,…,Xn)=∑i=1nlnXiT(X1,…,Xn)=∑i=1nln⁡XiT(X_1,\ldots,X_n)=\sum_{i=1}^n\ln X_i Comme , à première vue, me …


En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.