Nous supposons que . Ensuite, le fait suivant est bien connu:G∈G(n,p),p=lnn+lnlnn+c(n)nG∈G(n,p),p=lnn+lnlnn+c(n)nG\in G(n,p),p=\frac{\ln n +\ln \ln n +c(n)}{n} Pr[G has a Hamiltonian cycle]=⎧⎩⎨⎪⎪10e−e−c(c(n)→∞)(c(n)→−∞)(c(n)→c)Pr[G has a Hamiltonian cycle]={1(c(n)→∞)0(c(n)→−∞)e−e−c(c(n)→c)\begin{eqnarray} Pr [G\mbox{ has a Hamiltonian cycle}]= \begin{cases} 1 & (c(n)\rightarrow \infty) \\ 0 & (c(n)\rightarrow - \infty) \\ e^{-e^{-c}} & (c(n)\rightarrow c) \end{cases} \end{eqnarray} …
Nous savons que nous pouvons représenter n'importe quel graphe planaire par un ensemble de cercles dans le plan, connu sous le nom de graphe de pièces . Chaque cercle représente un sommet et il y a un bord entre deux sommets si et seulement si les cercles "s'embrassent" à leur …
On nous donne une famille FF\mathcal{F} de mmm sous-ensembles de {1, ..., n}. Est-il possible de trouver une borne inférieure non triviale sur la complexité de décider si FF\mathcal{F} est une famille Sperner? La borne inférieure triviale est O(nm)O(nm)O(n m) et je soupçonne fortement qu'elle n'est pas serrée. SS\mathcal{S}XXXYYYSS\mathcal{S}X≠YX≠YX \ne …
Les graphiques sans X sont ceux qui ne contiennent aucun graphique de X comme sous-graphique induit. Un trou est un cycle avec au moins 4 sommets. Un trou impair est un trou avec un nombre impair de sommets. Un antihole est le complément d'un trou. Les graphiques libres (trous impairs, …
Ceci fait suite à cette question sur math.stackexchange. Disons qu'un ensemble non vide S ⊆ ℤ est autoportant si pour tout a ∈ S, il existe des éléments distincts b, c ∈ S tels que a = b + c. Pour les entiers positifs n , des exemples simples incluent …
Soit le jeu et C (n, k) le jeu de toutes les -combinaisons d'éléments de sans répétition. Soit un -uple dans . On dit qu'une permutation de l'ensemble évite s'il n'y a pas de k-tuple d'entiers tels que { 1 , . . . , n } k [ n …
Il s'agit d'une question complémentaire à celle-ci concernant les graphiques infinis. Les réponses et commentaires à cette question énumèrent des objets et des situations qui sont naturellement modélisés par des graphiques infinis. Mais il existe également de nombreux théorèmes sur les graphes infinis (voir chapitre 8 du livre de Diestel) …
Un graphe connecté peut être décomposé en ses composants biconnectés. Cet arbre de point de coupure de bloc est unique. De même, les graphiques biconnectés peuvent être décomposés en composants triconnectés. L' arbre SPQR correspondant décrit toutes les coupes à 2 sommets dans le graphique et est uniquement déterminé à …
Les graphes planaires sont . Ces graphiques peuvent être décomposés en composants tri-connectés, qui sont connus pour être des composants plans ou .K3 , 3K3,3K_{3,3}K5K5K_5 Existe-t-il une décomposition aussi "sympa" des graphes du genre un? Dans leur travail séminal sur les mineurs de graphes, Roberston et Seymour ont montré que …
Le problème de maintenance des commandes (ou «maintien de l'ordre dans une liste») est de supporter les opérations: singleton: crée une liste avec un élément, lui renvoie un pointeur insertAfter: donné un pointeur sur un élément, insère un nouvel élément après, renvoyant un pointeur sur le nouvel élément delete: donne …
En essayant de concevoir mon propre algorithme de tri, je cherche le benchmark optimal auquel je peux le comparer. Pour un ordre non trié des éléments A et un ordre trié B , quel est un moyen efficace de calculer le nombre optimal de transpositions pour passer de A à …
Problème connexe: le théorème de Veblen déclare qu '"un graphique admet une décomposition de cycle si et seulement s'il est pair". Les cycles sont disjoints sur les bords, mais pas nécessairement disjoints sur les nœuds. Autrement dit, "L'ensemble des bords d'un graphe peut être partitionné en cycles si et seulement …
Comme dans cette question, je suis intéressé par le problème vs / pour les circuits tropicaux et (\ min, +) . Cette question se réduit à montrer les limites supérieures de la dimension VC des polynômes sur les semirings tropicaux (voir le théorème 2 ci-dessous). BPPBPP\mathbf{BPP}PP\mathbf{P}polypoly\mathrm{poly} (max,+)(max,+)(\max,+)(min,+)(min,+)(\min,+) Soit RRR un …
Je lis l'annexe sur les limites inférieures de l'ACC pour NEXP dans le livre Arora et Barak's Computational Complexity . http://www.cs.princeton.edu/theory/uploads/Compbook/accnexp.pdf L'un des lemmes clés est une transformation des circuits ACC0ACC0ACC^{0} en polynômes multilinéaires sur les entiers avec un degré polylogarithmique et des coefficients quasipolynomiaux, ou équivalents , la classe …
Considérons l' espace à nnn dimensions {0,1}n{0,1}n\{0,1\}^n , et soit ccc une contrainte linéaire de la forme a1x1+a2x2+a3x3+ ... +an−1xn−1+anxn≥ka1x1+a2x2+a3x3+ ... +an−1xn−1+anxn≥ka_1x_1 + a_2x_2 + a_3x_3 +\ ...\ + a_{n-1}x_{n-1} + a_nx_n \geq k , où ai∈Rai∈Ra_i \in \mathbb{R} , et k ∈ R .xi∈{0,1}xi∈{0,1}x_i \in \{0,1\}k∈Rk∈Rk \in \mathbb{R} Clairement, …
We use cookies and other tracking technologies to improve your browsing experience on our website,
to show you personalized content and targeted ads, to analyze our website traffic,
and to understand where our visitors are coming from.
By continuing, you consent to our use of cookies and other tracking technologies and
affirm you're at least 16 years old or have consent from a parent or guardian.