Questions marquées «unsupervised-learning»

Recherche d'une structure cachée (statistique) dans des données non étiquetées, y compris le regroupement et l'extraction d'entités pour la réduction de la dimensionnalité.

2
Comment comprendre un réseau de croyances profondes convolutionnel pour la classification audio?
Dans " Réseaux de croyances profondes convolutionnelles pour un apprentissage évolutif et non supervisé des représentations hiérarchiques " par Lee et. ( PDF ) Des DBN convolutifs sont proposés. La méthode est également évaluée pour la classification des images. Cela semble logique, car il existe des caractéristiques naturelles de l'image …

1
Pourquoi Anova () et drop1 () ont-ils fourni des réponses différentes pour les GLMM?
J'ai un GLMM du formulaire: lmer(present? ~ factor1 + factor2 + continuous + factor1*continuous + (1 | factor3), family=binomial) Lorsque j'utilise drop1(model, test="Chi"), j'obtiens des résultats différents de ceux que j'utilise à Anova(model, type="III")partir du package de voiture ou summary(model). Ces deux derniers donnent les mêmes réponses. En utilisant un …
10 r  anova  glmm  r  mixed-model  bootstrap  sample-size  cross-validation  roc  auc  sampling  stratification  random-allocation  logistic  stata  interpretation  proportion  r  regression  multiple-regression  linear-model  lm  r  cross-validation  cart  rpart  logistic  generalized-linear-model  econometrics  experiment-design  causality  instrumental-variables  random-allocation  predictive-models  data-mining  estimation  contingency-tables  epidemiology  standard-deviation  mean  ancova  psychology  statistical-significance  cross-validation  synthetic-data  poisson-distribution  negative-binomial  bioinformatics  sequence-analysis  distributions  binomial  classification  k-means  distance  unsupervised-learning  euclidean  correlation  chi-squared  spearman-rho  forecasting  excel  exponential-smoothing  binomial  sample-size  r  change-point  wilcoxon-signed-rank  ranks  clustering  matlab  covariance  covariance-matrix  normal-distribution  simulation  random-generation  bivariate  standardization  confounding  z-statistic  forecasting  arima  minitab  poisson-distribution  negative-binomial  poisson-regression  overdispersion  probability  self-study  markov-process  estimation  maximum-likelihood  classification  pca  group-differences  chi-squared  survival  missing-data  contingency-tables  anova  proportion 




1
Quel modèle d'apprentissage en profondeur peut classer des catégories qui ne s'excluent pas mutuellement
Exemples: J'ai une phrase dans la description de poste: "Java senior engineer in UK". Je veux utiliser un modèle d'apprentissage profond pour le prédire en 2 catégories: English et IT jobs. Si j'utilise un modèle de classification traditionnel, il ne peut prédire qu'une seule étiquette avec softmaxfonction à la dernière …
9 machine-learning  deep-learning  natural-language  tensorflow  sampling  distance  non-independent  application  regression  machine-learning  logistic  mixed-model  control-group  crossover  r  multivariate-analysis  ecology  procrustes-analysis  vegan  regression  hypothesis-testing  interpretation  chi-squared  bootstrap  r  bioinformatics  bayesian  exponential  beta-distribution  bernoulli-distribution  conjugate-prior  distributions  bayesian  prior  beta-distribution  covariance  naive-bayes  smoothing  laplace-smoothing  distributions  data-visualization  regression  probit  penalized  estimation  unbiased-estimator  fisher-information  unbalanced-classes  bayesian  model-selection  aic  multiple-regression  cross-validation  regression-coefficients  nonlinear-regression  standardization  naive-bayes  trend  machine-learning  clustering  unsupervised-learning  wilcoxon-mann-whitney  z-score  econometrics  generalized-moments  method-of-moments  machine-learning  conv-neural-network  image-processing  ocr  machine-learning  neural-networks  conv-neural-network  tensorflow  r  logistic  scoring-rules  probability  self-study  pdf  cdf  classification  svm  resampling  forecasting  rms  volatility-forecasting  diebold-mariano  neural-networks  prediction-interval  uncertainty 


1
Impossible de faire fonctionner correctement ce réseau d'auto-encodeur (avec les couches convolutionnelles et maxpool)
Les réseaux de codage automatique semblent être beaucoup plus délicats que les réseaux MLP classificateurs normaux. Après plusieurs tentatives d'utilisation de la lasagne, tout ce que j'obtiens dans la sortie reconstruite ressemble à son mieux à une moyenne floue de toutes les images de la base de données MNIST sans …

6
Comment préparer / construire des fonctionnalités pour la détection d'anomalies (données de sécurité réseau)
Mon objectif est d'analyser les journaux du réseau (par exemple, Apache, syslog, audit de sécurité Active Directory, etc.) à l'aide de la détection de cluster / anomalie à des fins de détection d'intrusion. Dans les journaux, j'ai beaucoup de champs de texte comme l'adresse IP, le nom d'utilisateur, le nom …

4
Comment effectuer plusieurs tests chi carré post-hoc sur une table 2 X 3?
Mon ensemble de données comprend la mortalité totale ou la survie d'un organisme sur trois types de sites: côtier, médian et extracôtier. Les nombres dans le tableau ci-dessous représentent le nombre de sites. 100% Mortality 100% Survival Inshore 30 31 Midchannel 10 20 Offshore 1 10 Je voudrais savoir si …



2
Pourquoi seule la valeur moyenne est utilisée dans la méthode de regroupement (K-means)?
Dans les méthodes de clustering telles que K-means , la distance euclidienne est la métrique à utiliser. Par conséquent, nous calculons uniquement les valeurs moyennes au sein de chaque cluster. Et puis des ajustements sont effectués sur les éléments en fonction de leur distance à chaque valeur moyenne. Je me …

1
Cartes auto-organisées vs k-means du noyau
Pour une application, je souhaite regrouper des données (potentiellement de grande dimension) et extraire la probabilité d'appartenir à un cluster. Je considère en ce moment des cartes auto-organisées ou des k-moyens du noyau pour faire le travail. Quels sont les avantages et les inconvénients de chaque classificateur pour cette tâche? …

En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.