Questions marquées «pca»

L'analyse en composantes principales (ACP) est une technique de réduction de dimensionnalité linéaire. Il réduit un ensemble de données multivarié à un plus petit ensemble de variables construites en préservant autant d'informations (autant de variance) que possible. Ces variables, appelées composantes principales, sont des combinaisons linéaires des variables d'entrée.


2
L'APC peut-elle être appliquée pour les données de séries chronologiques?
Je comprends que l'analyse en composantes principales (ACP) peut être appliquée essentiellement pour les données transversales. PCA peut-il être utilisé pour les données de séries temporelles efficacement en spécifiant l'année comme variable de série temporelle et en exécutant PCA normalement? J'ai trouvé que l'APC dynamique fonctionne pour les données de …
22 time-series  pca 

2
La limite de l'estimateur de régression de crête de «variance unitaire» lorsque
Considérons la régression de crête avec une contrainte supplémentaire exigeant que ait une somme unitaire de carrés (de manière équivalente, la variance unitaire); si nécessaire, on peut supposer que a également une somme unitaire de carrés: yy^y^\hat{\mathbf y}yy\mathbf y β^∗λ=argmin{∥y−Xβ∥2+λ∥β∥2}s.t.∥Xβ∥2=1.β^λ∗=arg⁡min{‖y−Xβ‖2+λ‖β‖2}s.t.‖Xβ‖2=1.\hat{\boldsymbol\beta}_\lambda^* = \arg\min\Big\{\|\mathbf y - \mathbf X \boldsymbol \beta\|^2+\lambda\|\boldsymbol\beta\|^2\Big\} \:\:\text{s.t.}\:\: \|\mathbf …


3
Corrélations étranges dans les résultats SVD de données aléatoires; ont-ils une explication mathématique ou est-ce un bug LAPACK?
J'observe un comportement très étrange dans le résultat SVD de données aléatoires, que je peux reproduire à la fois dans Matlab et R. Il ressemble à un problème numérique dans la bibliothèque LAPACK; est-ce? Je tire n=1000n=1000n=1000 échantillons de la gaussienne k=2k=2k=2 dimensionnelle avec une moyenne nulle et une covariance …


2
PCA en numpy et sklearn produit des résultats différents
Suis-je mal comprendre quelque chose. C'est mon code en utilisant sklearn import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from sklearn import decomposition from sklearn import datasets from sklearn.preprocessing import StandardScaler pca = decomposition.PCA(n_components=3) x = np.array([ [0.387,4878, 5.42], [0.723,12104,5.25], [1,12756,5.52], [1.524,6787,3.94], ]) pca.fit_transform(x) Production: array([[ …

4
Comment projeter un nouveau vecteur sur l'espace PCA?
Après avoir effectué l'analyse des composants principaux (PCA), je souhaite projeter un nouveau vecteur sur l'espace PCA (c'est-à-dire trouver ses coordonnées dans le système de coordonnées PCA). J'ai calculé PCA en langage R en utilisant prcomp. Maintenant, je devrais pouvoir multiplier mon vecteur par la matrice de rotation PCA. Les …
21 r  pca  r  variance  heteroscedasticity  misspecification  distributions  time-series  data-visualization  modeling  histogram  kolmogorov-smirnov  negative-binomial  likelihood-ratio  econometrics  panel-data  categorical-data  scales  survey  distributions  pdf  histogram  correlation  algorithms  r  gpu  parallel-computing  approximation  mean  median  references  sample-size  normality-assumption  central-limit-theorem  rule-of-thumb  confidence-interval  estimation  mixed-model  psychometrics  random-effects-model  hypothesis-testing  sample-size  dataset  large-data  regression  standard-deviation  variance  approximation  hypothesis-testing  variance  central-limit-theorem  kernel-trick  kernel-smoothing  error  sampling  hypothesis-testing  normality-assumption  philosophical  confidence-interval  modeling  model-selection  experiment-design  hypothesis-testing  statistical-significance  power  asymptotics  information-retrieval  anova  multiple-comparisons  ancova  classification  clustering  factor-analysis  psychometrics  r  sampling  expectation-maximization  markov-process  r  data-visualization  correlation  regression  statistical-significance  degrees-of-freedom  experiment-design  r  regression  curve-fitting  change-point  loess  machine-learning  classification  self-study  monte-carlo  markov-process  references  mathematical-statistics  data-visualization  python  cart  boosting  regression  classification  robust  cart  survey  binomial  psychometrics  likert  psychology  asymptotics  multinomial 

1
Qu'est-ce que «l'effet de fer à cheval» et / ou l '«effet d'arc» dans l'analyse PCA / correspondance?
Il existe de nombreuses techniques en statistiques écologiques pour l'analyse exploratoire des données multidimensionnelles. Ces techniques sont appelées techniques d '«ordination». Beaucoup sont identiques ou étroitement liés aux techniques courantes ailleurs dans les statistiques. L'exemple prototypique serait peut-être l'analyse des composants principaux (ACP). Les écologistes pourraient utiliser l'ACP et des …

2
Y a-t-il un avantage de SVD sur PCA?
Je sais comment calculer mathématiquement PCA et SVD, et je sais que les deux peuvent être appliqués à la régression linéaire des moindres carrés. Le principal avantage de SVD semble mathématiquement être qu'il peut être appliqué à des matrices non carrées. Les deux se concentrent sur la décomposition de la …
20 pca  least-squares  svd 

2
Méthodes de calcul des scores factoriels et quelle est la matrice du «coefficient de score» en ACP ou en analyse factorielle?
Selon ma compréhension, dans l'ACP basée sur les corrélations, nous obtenons des charges de facteur (= composant principal dans ce cas) qui ne sont que les corrélations entre les variables et les facteurs. Maintenant, lorsque je dois générer des scores factoriels dans SPSS, je peux obtenir directement les scores factoriels …


6
PCA de données non gaussiennes
J'ai quelques questions rapides sur PCA: L'ACP suppose- t-elle que l'ensemble de données est gaussien? Que se passe-t-il lorsque j'applique une PCA à des données intrinsèquement non linéaires? Étant donné un ensemble de données, le processus consiste d'abord à normaliser la moyenne, à définir la variance sur 1, à prendre …
20 pca  svd 

4
Quelles sont les valeurs correctes pour la précision et le rappel dans les cas de bord?
La précision est définie comme: p = true positives / (true positives + false positives) Est - il exact que, true positiveset false positivesapproche 0, la précision approche 1? Même question pour rappel: r = true positives / (true positives + false negatives) J'implémente actuellement un test statistique où j'ai …
20 precision-recall  data-visualization  logarithm  references  r  networks  data-visualization  standard-deviation  probability  binomial  negative-binomial  r  categorical-data  aggregation  plyr  survival  python  regression  r  t-test  bayesian  logistic  data-transformation  confidence-interval  t-test  interpretation  distributions  data-visualization  pca  genetics  r  finance  maximum  probability  standard-deviation  probability  r  information-theory  references  computational-statistics  computing  references  engineering-statistics  t-test  hypothesis-testing  independence  definition  r  censoring  negative-binomial  poisson-distribution  variance  mixed-model  correlation  intraclass-correlation  aggregation  interpretation  effect-size  hypothesis-testing  goodness-of-fit  normality-assumption  small-sample  distributions  regression  normality-assumption  t-test  anova  confidence-interval  z-statistic  finance  hypothesis-testing  mean  model-selection  information-geometry  bayesian  frequentist  terminology  type-i-and-ii-errors  cross-validation  smoothing  splines  data-transformation  normality-assumption  variance-stabilizing  r  spss  stata  python  correlation  logistic  logit  link-function  regression  predictor  pca  factor-analysis  r  bayesian  maximum-likelihood  mcmc  conditional-probability  statistical-significance  chi-squared  proportion  estimation  error  shrinkage  application  steins-phenomenon 

1
Comment LDA, une technique de classification, sert également de technique de réduction de dimensionnalité comme l'ACP
Dans cet article , l'auteur relie l'analyse discriminante linéaire (LDA) à l'analyse en composantes principales (ACP). Avec mes connaissances limitées, je ne suis pas en mesure de comprendre comment LDA peut être quelque peu similaire à PCA. J'ai toujours pensé que LDA était une forme d'algorithme de classification, similaire à …

En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.