Questions marquées «mixed-model»

Les modèles mixtes (ou multiniveaux ou hiérarchiques) sont des modèles linéaires qui incluent à la fois des effets fixes et des effets aléatoires. Ils sont utilisés pour modéliser des données longitudinales ou imbriquées.

3
Estimation des effets aléatoires et application d'une structure de corrélation / covariance définie par l'utilisateur avec le package R lme4 ou nlme
J'ai le type de données suivant. J'ai évalué 10 individus chacun répété 10 fois. J'ai une matrice de relations 10x10 (relation entre toutes les combinaisons des individus). set.seed(1234) mydata <- data.frame (gen = factor(rep(1:10, each = 10)), repl = factor(rep(1:10, 10)), yld = rnorm(10, 5, 0.5)) Cette génération est constituée …
9 r  mixed-model 





1
Régularisation L2 vs retrait d'effets aléatoires
Une propriété fondamentale de la régression à effets aléatoires est que les estimations d'interception aléatoire sont "rétrécies" vers la moyenne globale de la réponse en fonction de la variance relative de chaque estimation. U^j=ρjy¯j+(1−ρj)y¯U^j=ρjy¯j+(1−ρj)y¯\hat{U}_j = \rho_j \bar{y}_j + (1-\rho_j)\bar{y} oùρj=τ2/(τ2+σ2/nj).ρj=τ2/(τ2+σ2/nj).\rho_j = \tau^2 / (\tau^2 + \sigma^2/n_j). C'est également le cas …


3
Comment effectuer une SVD pour imputer des valeurs manquantes, un exemple concret
J'ai lu les excellents commentaires sur la façon de traiter les valeurs manquantes avant d'appliquer SVD, mais j'aimerais savoir comment cela fonctionne avec un exemple simple: Movie1 Movie2 Movie3 User1 5 4 User2 2 5 5 User3 3 4 User4 1 5 User5 5 1 5 Étant donné la matrice …
8 r  missing-data  data-imputation  svd  sampling  matlab  mcmc  importance-sampling  predictive-models  prediction  algorithms  graphical-model  graph-theory  r  regression  regression-coefficients  r-squared  r  regression  modeling  confounding  residuals  fitting  glmm  zero-inflation  overdispersion  optimization  curve-fitting  regression  time-series  order-statistics  bayesian  prior  uninformative-prior  probability  discrete-data  kolmogorov-smirnov  r  data-visualization  histogram  dimensionality-reduction  classification  clustering  accuracy  semi-supervised  labeling  state-space-models  t-test  biostatistics  paired-comparisons  paired-data  bioinformatics  regression  logistic  multiple-regression  mixed-model  random-effects-model  neural-networks  error-propagation  numerical-integration  time-series  missing-data  data-imputation  probability  self-study  combinatorics  survival  cox-model  statistical-significance  wilcoxon-mann-whitney  hypothesis-testing  distributions  normal-distribution  variance  t-distribution  probability  simulation  random-walk  diffusion  hypothesis-testing  z-test  hypothesis-testing  data-transformation  lognormal  r  regression  agreement-statistics  classification  svm  mixed-model  non-independent  observational-study  goodness-of-fit  residuals  confirmatory-factor  neural-networks  deep-learning 

3
Probabilité gaussienne + quel a priori = Marginal gaussien?
Étant donné une probabilité gaussienne pour un échantillon comme avec étant l'espace des paramètres et , paramétrisations arbitraires du vecteur moyen et de la matrice de covariance.yyyp(y|θ)=N(y;μ(θ),Σ(θ))p(y|θ)=N(y;μ(θ),Σ(θ))p(y|\theta) = \mathcal{N}(y;\mu(\theta),\Sigma(\theta))ΘΘ\Thetaμ(θ)μ(θ)\mu(\theta)Σ(θ)Σ(θ)\Sigma(\theta) Est-il possible de spécifier une densité antérieure et un paramétrage du vecteur moyen et de la matrice de covariance tels que …

1
Les effets de groupe dans un modèle à effets mixtes sont-ils supposés avoir été choisis dans une distribution normale?
Imaginons que nous nous intéressions à la façon dont les notes des étudiants sont affectées par le nombre d'heures que ces étudiants étudient. Nous échantillonnons des étudiants de plusieurs écoles différentes. Nous exécutons le modèle d'effets mixtes suivant: exam.gradesje= a +β1×heures.étudiéje+écolej+ejeexam.gradesje=une+β1×heures.étudiéje+écolej+eje \text{exam.grades}_i = a + \beta_1 \times \text{hours.studied}_i + \text{school}_j …

2
R lmerTest et tests de plusieurs effets aléatoires
Je suis curieux de savoir comment le package lmerTest dans R, en particulier la fonction "rand", gère les tests d'effets aléatoires. Prenons l'exemple du pdf lmerTest sur CRAN qui utilise l'ensemble de données "carottes" intégré: #import lme4 package and lmerTest package library(lmerTest) #lmer model with correlation between intercept and slopes …


1
Quel est le sens de
J'ai du mal à bien comprendre certaines notations dans un livre où ils utilisent un symbole "en forme de croix" - d'abord comme ⨁i=1nZj⨁i=1nZj\bigoplus\limits_{i=1}^n{} Z_j où le ZjZjZ_j sont des matrices et secondes comme In⊗ΦIn⊗ΦI_n \otimes \Phi où InInI_n et ΦΦ\Phi sont les deux matrices. Le livre porte sur les …

1
Probabilité et estimations des effets mixtes Régression logistique
Simulons d'abord quelques données pour une régression logistique avec des parties fixes et aléatoires: set.seed(1) n <- 100 x <- runif(n) z <- sample(c(0,1), n, replace=TRUE) b <- rnorm(2) beta <- c(0.4, 0.8) X <- model.matrix(~x) Z <- cbind(z, 1-z) eta <- X%*%beta + Z%*%b pr <- 1/(1+exp(-eta)) y <- …

1
Lorsque vous faites des inférences sur les moyennes de groupe, les intervalles crédibles sont-ils sensibles à la variance intra-sujet alors que les intervalles de confiance ne le sont pas?
Ceci est un spin-off de cette question: comment comparer deux groupes avec plusieurs mesures pour chaque individu avec R? Dans les réponses (si j'ai bien compris), j'ai appris que la variance intra-sujet n'affecte pas les inférences faites sur les moyennes de groupe et il est correct de simplement prendre les …

En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.