Questions marquées «feature-selection»

Méthodes et principes de sélection d'un sous-ensemble d'attributs à utiliser dans une modélisation ultérieure




2
Pourquoi un modèle statistique serait-il surchargé s'il était doté d'un énorme ensemble de données?
Mon projet actuel peut m'obliger à construire un modèle pour prédire le comportement d'un certain groupe de personnes. l'ensemble de données de formation ne contient que 6 variables (id est uniquement à des fins d'identification): id, age, income, gender, job category, monthly spend dans laquelle se monthly spendtrouve la variable …
8 modeling  large-data  overfitting  clustering  algorithms  error  spatial  r  regression  predictive-models  linear-model  average  measurement-error  weighted-mean  error-propagation  python  standard-error  weighted-regression  hypothesis-testing  time-series  machine-learning  self-study  arima  regression  correlation  anova  statistical-significance  excel  r  regression  distributions  statistical-significance  contingency-tables  regression  optimization  measurement-error  loss-functions  image-processing  java  panel-data  probability  conditional-probability  r  lme4-nlme  model-comparison  time-series  probability  probability  conditional-probability  logistic  multiple-regression  model-selection  r  regression  model-based-clustering  svm  feature-selection  feature-construction  time-series  forecasting  stationarity  r  distributions  bootstrap  r  distributions  estimation  maximum-likelihood  garch  references  probability  conditional-probability  regression  logistic  regression-coefficients  model-comparison  confidence-interval  r  regression  r  generalized-linear-model  outliers  robust  regression  classification  categorical-data  r  association-rules  machine-learning  distributions  posterior  likelihood  r  hypothesis-testing  normality-assumption  missing-data  convergence  expectation-maximization  regression  self-study  categorical-data  regression  simulation  regression  self-study  self-study  gamma-distribution  modeling  microarray  synthetic-data 

6
L'utilisation des mêmes données pour la sélection d'entités et la validation croisée est-elle biaisée ou non?
Nous avons un petit ensemble de données (environ 250 échantillons * 100 entités) sur lequel nous voulons construire un classificateur binaire après avoir sélectionné le meilleur sous-ensemble d'entités. Disons que nous partitionnons les données en: Formation, validation et tests Pour la sélection des fonctionnalités, nous appliquons un modèle de wrapper …

3
Puis-je effectuer une recherche exhaustive avec validation croisée pour la sélection des fonctionnalités?
J'ai lu certains articles sur la sélection des fonctionnalités et la validation croisée, mais j'ai encore des questions sur la bonne procédure. Supposons que j'ai un ensemble de données avec 10 fonctionnalités et que je souhaite sélectionner les meilleures fonctionnalités. Supposons également que j'utilise un classificateur de voisin le plus …

1
Intervalles de confiance lors de l'utilisation du théorème de Bayes
Je calcule des probabilités conditionnelles et des intervalles de confiance à 95% associés. Pour bon nombre de mes cas, j'ai un décompte simple des xsuccès des nessais (à partir d'un tableau de contingence), donc je peux utiliser un intervalle de confiance binomial, tel que celui fourni par binom.confint(x, n, method='exact')dans …
En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.