Questions marquées «variance»

L'écart quadratique attendu d'une variable aléatoire par rapport à sa moyenne; ou, l'écart quadratique moyen des données sur leur moyenne.





3
Un exemple: régression LASSO utilisant glmnet pour les résultats binaires
Je commence à me familiariser avec l’utilisation de glmnetavec LASSO Regression, où mon résultat d’intérêt est dichotomique. J'ai créé un petit cadre de données fictif ci-dessous: age <- c(4, 8, 7, 12, 6, 9, 10, 14, 7) gender <- c(1, 0, 1, 1, 1, 0, 1, 0, 0) bmi_p <- …
78 r  self-study  lasso  regression  interpretation  anova  statistical-significance  survey  conditional-probability  independence  naive-bayes  graphical-model  r  time-series  forecasting  arima  r  forecasting  exponential-smoothing  bootstrap  outliers  r  regression  poisson-distribution  zero-inflation  genetic-algorithms  machine-learning  feature-selection  cart  categorical-data  interpretation  descriptive-statistics  variance  multivariate-analysis  covariance-matrix  r  data-visualization  generalized-linear-model  binomial  proportion  pca  matlab  svd  time-series  correlation  spss  arima  chi-squared  curve-fitting  text-mining  zipf  probability  categorical-data  distance  group-differences  bhattacharyya  regression  variance  mean  data-visualization  variance  clustering  r  standard-error  association-measure  somers-d  normal-distribution  integral  numerical-integration  bayesian  clustering  python  pymc  nonparametric-bayes  machine-learning  svm  kernel-trick  hyperparameter  poisson-distribution  mean  continuous-data  univariate  missing-data  dag  python  likelihood  dirichlet-distribution  r  anova  hypothesis-testing  statistical-significance  p-value  rating  data-imputation  censoring  threshold 

8
Générer une variable aléatoire avec une corrélation définie avec une ou plusieurs variables existantes
Pour une étude de simulation , je dois générer des variables aléatoires qui montrent une corrélation prefined (population) à une variable existante .YYY J'ai examiné les Rpackages copulaet ceux CDVinequi peuvent produire des distributions multivariées aléatoires avec une structure de dépendance donnée. Cependant, il n'est pas possible de fixer l'une …

5
Comment exactement les statisticiens ont-ils accepté d'utiliser (n-1) comme estimateur sans biais pour la variance de population sans simulation?
La formule de calcul de la variance a au dénominateur:( n - 1 )(n−1)(n-1) s2= ΣNi = 1( xje- x¯)2n - 1s2=∑i=1N(xi−x¯)2n−1s^2 = \frac{\sum_{i=1}^N (x_i - \bar{x})^2}{n-1} Je me suis toujours demandé pourquoi. Cependant, lire et regarder quelques bonnes vidéos sur le "pourquoi", il semble que soit un bon estimateur …





3
Interprétation du prédicteur et / ou de la réponse transformé par log
Je me demande si cela fait une différence d'interprétation si seules les variables dépendantes, indépendantes et dépendantes, ou uniquement les variables indépendantes sont transformées par un journal. Considérons le cas de log(DV) = Intercept + B1*IV + Error Je peux interpréter l'IV comme l'augmentation en pourcentage, mais comment cela change-t-il …
46 regression  data-transformation  interpretation  regression-coefficients  logarithm  r  dataset  stata  hypothesis-testing  contingency-tables  hypothesis-testing  statistical-significance  standard-deviation  unbiased-estimator  t-distribution  r  functional-data-analysis  maximum-likelihood  bootstrap  regression  change-point  regression  sas  hypothesis-testing  bayesian  randomness  predictive-models  nonparametric  terminology  parametric  correlation  effect-size  loess  mean  pdf  quantile-function  bioinformatics  regression  terminology  r-squared  pdf  maximum  multivariate-analysis  references  data-visualization  r  pca  r  mixed-model  lme4-nlme  distributions  probability  bayesian  prior  anova  chi-squared  binomial  generalized-linear-model  anova  repeated-measures  t-test  post-hoc  clustering  variance  probability  hypothesis-testing  references  binomial  profile-likelihood  self-study  excel  data-transformation  skewness  distributions  statistical-significance  econometrics  spatial  r  regression  anova  spss  linear-model 

1
Variance du produit de plusieurs variables aléatoires
Nous savons que la réponse pour deux variables indépendantes: Var(XY)=E(X2Y2)−(E(XY))2=Var(X)Var(Y)+Var(X)(E(Y))2+Var(Y)(E(X))2Var(XY)=E(X2Y2)−(E(XY))2=Var(X)Var(Y)+Var(X)(E(Y))2+Var(Y)(E(X))2 {\rm Var}(XY) = E(X^2Y^2) − (E(XY))^2={\rm Var}(X){\rm Var}(Y)+{\rm Var}(X)(E(Y))^2+{\rm Var}(Y)(E(X))^2 Cependant, si nous prenons le produit de plus de deux variables, , quelle serait la réponse en termes de variance et de valeur attendue de chaque variable?Var(X1X2⋯Xn)Var(X1X2⋯Xn){\rm Var}(X_1X_2 \cdots X_n)



En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.