Je décrirai la solution la plus générale possible. Résoudre le problème dans cette généralité nous permet de réaliser une implémentation logicielle remarquablement compacte: deux lignes de R
code suffisent.
Choisissez un vecteur , de la même longueur que Y , selon la distribution de votre choix . Soit Y ⊥ soit les résidus de la régression des moindres carrés de X contre Y : cet extrait le Y composant de X . En ajoutant de nouveau un multiple approprié de Y à Y ⊥ , on peut produire un vecteur ayant une corrélation souhaitée ρ avec Y . Jusqu'à une constante additive arbitraire et une constante multiplicative positive - que vous êtes libre de choisir, de toute façon que ce soit - la solution est:XYY⊥XYYXYY⊥ρY
XY;ρ=ρSD(Y⊥)Y+1−ρ2−−−−−√SD(Y)Y⊥.
SD
R
X
complement <- function(y, rho, x) {
if (missing(x)) x <- rnorm(length(y)) # Optional: supply a default if `x` is not given
y.perp <- residuals(lm(x ~ y))
rho * sd(y.perp) * y + y.perp * sd(y) * sqrt(1 - rho^2)
}
Y50XY;ρYX=(1,2,…,50)Y
Il y a une similitude remarquable entre les parcelles, n'est-ce pas :-).
Si vous souhaitez expérimenter, voici le code qui a généré ces données et la figure. (Je n'ai pas pris la peine d'utiliser la liberté de modifier et d'ajuster les résultats, ce qui est une opération facile.)
y <- rnorm(50, sd=10)
x <- 1:50 # Optional
rho <- seq(0, 1, length.out=6) * rep(c(-1,1), 3)
X <- data.frame(z=as.vector(sapply(rho, function(rho) complement(y, rho, x))),
rho=ordered(rep(signif(rho, 2), each=length(y))),
y=rep(y, length(rho)))
library(ggplot2)
ggplot(X, aes(y,z, group=rho)) +
geom_smooth(method="lm", color="Black") +
geom_rug(sides="b") +
geom_point(aes(fill=rho), alpha=1/2, shape=21) +
facet_wrap(~ rho, scales="free")
YXY1,Y2,…,Yk;ρ1,ρ2,…,ρkYiYiXYiYY
R
Yiy
y <- scale(y) # Makes computations simpler
e <- residuals(lm(x ~ y)) # Take out the columns of matrix `y`
y.dual <- with(svd(y), (n-1)*u %*% diag(ifelse(d > 0, 1/d, 0)) %*% t(v))
sigma2 <- c((1 - rho %*% cov(y.dual) %*% rho) / var(e))
return(y.dual %*% rho + sqrt(sigma2)*e)
Ce qui suit est une implémentation plus complète pour ceux qui souhaitent expérimenter.
complement <- function(y, rho, x) {
#
# Process the arguments.
#
if(!is.matrix(y)) y <- matrix(y, ncol=1)
if (missing(x)) x <- rnorm(n)
d <- ncol(y)
n <- nrow(y)
y <- scale(y) # Makes computations simpler
#
# Remove the effects of `y` on `x`.
#
e <- residuals(lm(x ~ y))
#
# Calculate the coefficient `sigma` of `e` so that the correlation of
# `y` with the linear combination y.dual %*% rho + sigma*e is the desired
# vector.
#
y.dual <- with(svd(y), (n-1)*u %*% diag(ifelse(d > 0, 1/d, 0)) %*% t(v))
sigma2 <- c((1 - rho %*% cov(y.dual) %*% rho) / var(e))
#
# Return this linear combination.
#
if (sigma2 >= 0) {
sigma <- sqrt(sigma2)
z <- y.dual %*% rho + sigma*e
} else {
warning("Correlations are impossible.")
z <- rep(0, n)
}
return(z)
}
#
# Set up the problem.
#
d <- 3 # Number of given variables
n <- 50 # Dimension of all vectors
x <- 1:n # Optionally: specify `x` or draw from any distribution
y <- matrix(rnorm(d*n), ncol=d) # Create `d` original variables in any way
rho <- c(0.5, -0.5, 0) # Specify the correlations
#
# Verify the results.
#
z <- complement(y, rho, x)
cbind('Actual correlations' = cor(cbind(z, y))[1,-1],
'Target correlations' = rho)
#
# Display them.
#
colnames(y) <- paste0("y.", 1:d)
colnames(z) <- "z"
pairs(cbind(z, y))