Questions marquées «degrees-of-freedom»

Le terme «degrés de liberté» est utilisé pour décrire le nombre de valeurs dans le calcul final d'une statistique qui sont libres de varier. À utiliser également pour les «degrés de liberté effectifs».

11
Comment comprendre les degrés de liberté?
D'après Wikipedia , il existe trois interprétations des degrés de liberté d'une statistique: En statistique, le nombre de degrés de liberté est le nombre de valeurs dans le calcul final d’une statistique qui sont libres de varier . Les estimations de paramètres statistiques peuvent être basées sur différentes quantités d'informations …


1
Les degrés de liberté peuvent-ils être un nombre non entier?
Lorsque j'utilise GAM, cela me donne un DF résiduel de (dernière ligne du code). Qu'est-ce que ça veut dire? Au-delà de l'exemple GAM, en général, le nombre de degrés de liberté peut-il être un nombre non entier?26.626.626.6 > library(gam) > summary(gam(mpg~lo(wt),data=mtcars)) Call: gam(formula = mpg ~ lo(wt), data = mtcars) …
27 r  degrees-of-freedom  gam  machine-learning  pca  lasso  probability  self-study  bootstrap  expected-value  regression  machine-learning  linear-model  probability  simulation  random-generation  machine-learning  distributions  svm  libsvm  classification  pca  multivariate-analysis  feature-selection  archaeology  r  regression  dataset  simulation  r  regression  time-series  forecasting  predictive-models  r  mean  sem  lavaan  machine-learning  regularization  regression  conv-neural-network  convolution  classification  deep-learning  conv-neural-network  regression  categorical-data  econometrics  r  confirmatory-factor  scale-invariance  self-study  unbiased-estimator  mse  regression  residuals  sampling  random-variable  sample  probability  random-variable  convergence  r  survival  weibull  references  autocorrelation  hypothesis-testing  distributions  correlation  regression  statistical-significance  regression-coefficients  univariate  categorical-data  chi-squared  regression  machine-learning  multiple-regression  categorical-data  linear-model  pca  factor-analysis  factor-rotation  classification  scikit-learn  logistic  p-value  regression  panel-data  multilevel-analysis  variance  bootstrap  bias  probability  r  distributions  interquartile  time-series  hypothesis-testing  normal-distribution  normality-assumption  kurtosis  arima  panel-data  stata  clustered-standard-errors  machine-learning  optimization  lasso  multivariate-analysis  ancova  machine-learning  cross-validation 


2
Comment comparer et / ou valider les modèles à effets mixtes?
Comment les modèles d'effets mixtes (linéaires) sont-ils normalement comparés les uns aux autres? Je sais que des tests de rapport de vraisemblance peuvent être utilisés, mais cela ne fonctionne pas si un modèle n'est pas un «sous-ensemble» de l'autre correct? L'estimation des modèles df est-elle toujours simple? Nombre d'effets fixes …

4
Comment projeter un nouveau vecteur sur l'espace PCA?
Après avoir effectué l'analyse des composants principaux (PCA), je souhaite projeter un nouveau vecteur sur l'espace PCA (c'est-à-dire trouver ses coordonnées dans le système de coordonnées PCA). J'ai calculé PCA en langage R en utilisant prcomp. Maintenant, je devrais pouvoir multiplier mon vecteur par la matrice de rotation PCA. Les …
21 r  pca  r  variance  heteroscedasticity  misspecification  distributions  time-series  data-visualization  modeling  histogram  kolmogorov-smirnov  negative-binomial  likelihood-ratio  econometrics  panel-data  categorical-data  scales  survey  distributions  pdf  histogram  correlation  algorithms  r  gpu  parallel-computing  approximation  mean  median  references  sample-size  normality-assumption  central-limit-theorem  rule-of-thumb  confidence-interval  estimation  mixed-model  psychometrics  random-effects-model  hypothesis-testing  sample-size  dataset  large-data  regression  standard-deviation  variance  approximation  hypothesis-testing  variance  central-limit-theorem  kernel-trick  kernel-smoothing  error  sampling  hypothesis-testing  normality-assumption  philosophical  confidence-interval  modeling  model-selection  experiment-design  hypothesis-testing  statistical-significance  power  asymptotics  information-retrieval  anova  multiple-comparisons  ancova  classification  clustering  factor-analysis  psychometrics  r  sampling  expectation-maximization  markov-process  r  data-visualization  correlation  regression  statistical-significance  degrees-of-freedom  experiment-design  r  regression  curve-fitting  change-point  loess  machine-learning  classification  self-study  monte-carlo  markov-process  references  mathematical-statistics  data-visualization  python  cart  boosting  regression  classification  robust  cart  survey  binomial  psychometrics  likert  psychology  asymptotics  multinomial 




2
Explication des degrés de liberté non entiers dans le test t avec des variances inégales
La procédure SPSS t-Test rapporte 2 analyses lors de la comparaison de 2 moyennes indépendantes, une analyse avec des variances égales supposées et une avec des variances égales non supposées. Les degrés de liberté (df) lorsque des variances égales sont supposées sont toujours des valeurs entières (et égales n-2). Les …





3
tester les coefficients de régression logistique en utilisant et les degrés de liberté de déviance résiduelle
Résumé: Existe - t-il une théorie statistique pour soutenir l'utilisation de la distribution (avec des degrés de liberté basés sur la déviance résiduelle) pour les tests des coefficients de régression logistique, plutôt que la distribution normale standard?ttt Il y a quelque temps, j'ai découvert qu'en ajustant un modèle de régression …

En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.