Questions marquées «caret»

Caret est un package R contenant un ensemble de fonctions qui tentent de rationaliser le processus de création de modèles prédictifs.

1
Package GBM vs Caret utilisant GBM
J'ai ajusté le modèle à l'aide caret, mais j'ai ensuite réexécuté le modèle à l'aide du gbmpackage. Je crois comprendre que le caretpackage utilise gbmet que la sortie doit être la même. Cependant, un simple test rapide utilisant data(iris)montre une différence dans le modèle d'environ 5% en utilisant RMSE et …

1
Comment trouver un intervalle de prédiction GBM
Je travaille avec des modèles GBM en utilisant le package caret et cherche à trouver une méthode pour résoudre les intervalles de prédiction pour mes données prédites. J'ai beaucoup cherché, mais je n'ai trouvé que quelques idées pour trouver des intervalles de prédiction pour Random Forest. Tout code d'aide / …

1
Un prétraitement est-il nécessaire avant la prédiction à l'aide de FinalModel de RandomForest avec package caret?
J'utilise le package caret pour entraîner un objet randomForest avec 10x10CV. library(caret) tc <- trainControl("repeatedcv", number=10, repeats=10, classProbs=TRUE, savePred=T) RFFit <- train(Defect ~., data=trainingSet, method="rf", trControl=tc, preProc=c("center", "scale")) Après cela, je teste randomForest sur un testSet (nouvelles données) RF.testSet$Prediction <- predict(RFFit, newdata=testSet) La matrice de confusion me montre que le …

2
Sélection des fonctionnalités et réglage des paramètres avec curseur pour la forêt aléatoire
J'ai des données avec quelques milliers de fonctionnalités et je souhaite effectuer une sélection récursive des fonctionnalités (RFE) pour supprimer celles qui ne sont pas informatives. Je le fais avec caret et RFE. Cependant, j'ai commencé à penser, si je veux obtenir le meilleur ajustement de régression (forêt aléatoire, par …

1
R / mgcv: Pourquoi les produits tenseurs te () et ti () produisent-ils des surfaces différentes?
Le mgcvpackage pour Ra deux fonctions pour ajuster les interactions des produits tensoriels: te()et ti(). Je comprends la division de base du travail entre les deux (ajustement d'une interaction non linéaire vs décomposition de cette interaction en effets principaux et interaction). Ce que je ne comprends pas, c'est pourquoi te(x1, …
11 r  gam  mgcv  conditional-probability  mixed-model  references  bayesian  estimation  conditional-probability  machine-learning  optimization  gradient-descent  r  hypothesis-testing  wilcoxon-mann-whitney  time-series  bayesian  inference  change-point  time-series  anova  repeated-measures  statistical-significance  bayesian  contingency-tables  regression  prediction  quantiles  classification  auc  k-means  scikit-learn  regression  spatial  circular-statistics  t-test  effect-size  cohens-d  r  cross-validation  feature-selection  caret  machine-learning  modeling  python  optimization  frequentist  correlation  sample-size  normalization  group-differences  heteroscedasticity  independence  generalized-least-squares  lme4-nlme  references  mcmc  metropolis-hastings  optimization  r  logistic  feature-selection  separation  clustering  k-means  normal-distribution  gaussian-mixture  kullback-leibler  java  spark-mllib  data-visualization  categorical-data  barplot  hypothesis-testing  statistical-significance  chi-squared  type-i-and-ii-errors  pca  scikit-learn  conditional-expectation  statistical-significance  meta-analysis  intuition  r  time-series  multivariate-analysis  garch  machine-learning  classification  data-mining  missing-data  cart  regression  cross-validation  matrix-decomposition  categorical-data  repeated-measures  chi-squared  assumptions  contingency-tables  prediction  binary-data  trend  test-for-trend  matrix-inverse  anova  categorical-data  regression-coefficients  standard-error  r  distributions  exponential  interarrival-time  copula  log-likelihood  time-series  forecasting  prediction-interval  mean  standard-error  meta-analysis  meta-regression  network-meta-analysis  systematic-review  normal-distribution  multiple-regression  generalized-linear-model  poisson-distribution  poisson-regression  r  sas  cohens-kappa 

1
Nombre de composants principaux lors du prétraitement à l'aide de PCA dans le package caret dans R
J'utilise le caretpackage Rpour la formation des classificateurs SVM binaires. Pour réduire les fonctionnalités, je prétraitement avec PCA en utilisant la fonction intégrée preProc=c("pca")lors de l'appel train(). Voici mes questions: Comment le curseur sélectionne-t-il les principaux composants? Existe-t-il un nombre fixe de composants principaux sélectionnés? Les principales composantes sont-elles sélectionnées …

2
VarImp du curseur pour le modèle randomForest
J'ai du mal à comprendre comment varImpfonctionne la fonction pour un modèle randomForest avec le caretpackage. Dans l'exemple ci-dessous, la fonction var3 n'a aucune importance en utilisant la varImpfonction caret , mais le modèle final randomForest sous-jacent a une importance non nulle pour la fonction var3. pourquoi est-ce le cas? …
10 r  caret  random-forest 


En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.