Considérons le modèle suivant: une chaîne de n bits r = r 1 ... r n est choisie uniformément au hasard. Ensuite, chaque indice i∈ {1, ..., n} est placé dans un ensemble A avec une probabilité indépendante 1/2. Enfin, un adversaire est autorisé, pour chaque i∈A séparément, à retourner …
Soit BPTIME(f(n))BPTIME(f(n))\mathsf{BPTIME}(f(n)) la classe des problèmes de décision ayant un algorithme aléatoire à erreur bilatérale borné fonctionnant dans le temps .O(f(n))O(f(n))O(f(n)) Connaît-on un problème tel que mais ? Sa non-existence est-elle prouvée? Q ∈ B P T I M E ( n k ) Q ∉ D T I M …
Supposons que je considère la variante suivante de BPP, qui appelons E (xact) BPP: Une langue est en EBPP s'il y a un TG aléatoire polynomial qui accepte chaque mot de la langue avec exactement 3/4 de probabilité et chaque mot qui n'est pas dans la langue avec exactement 1/4 …
Une chose que les ordinateurs quantiques peuvent faire (peut-être même avec seulement des circuits quantiques BPP + log-depth) est d'échantillonner approximativement la transformée de Fourier d'une fonction booléenne évaluée en P.±1±1\pm 1 Ici et ci-dessous quand je parle d'échantillonner la transformée de Fourier, je veux dire choisir x selon . …
Pour autant que je sache, la plupart des implémentations de la génération de nombres pseudo-aléatoires utilisent des méthodes telles que les registres de rétroaction à décalage linéaire (LSFR), ou ces algorithmes "Mersenne Twister". Bien qu'ils passent de nombreux tests statistiques (heuristiques), il n'y a aucune garantie théorique qu'ils semblent pseudo-aléatoires …
Cette question est inspirée du t-shirt du Georgia Tech Algorithms and Randomness Center , qui demande "Randomize or not ?!" Il existe de nombreux exemples où la randomisation est utile, en particulier lors d'opérations dans des environnements contradictoires. Il existe également certains paramètres dans lesquels la randomisation n'aide ni ne …
J'ai trouvé le livre Pairwise Independence and Derandomization sur le sujet, mais il est plus axé sur la recherche que sur le tutoriel. Je suis nouveau sur le sujet de la "dérandomisation", et en tant que tel, je voulais savoir de quelle référence commencer? Je préfère celui qui traite de …
Étant donné deux arbres AVL T1T1T_1 et T2T2T_2 et une valeur trtrt_r telle que ∀x∈T1,∀y∈T2,x<tr<y∀x∈T1,∀y∈T2,x<tr<y\forall x \in T_1, \forall y \in T_2, x < t_r < y , il est facile de construire un nouvel arbre AVL contenant trtrt_r et les valeurs en T1T1T_1 et T2T2T_2 dans le temps O(1+|h(T1)−h(T2)|)O(1+|h(T1)−h(T2)|)O(1+|h(T_1) …
Quels sont quelques exemples majeurs de dérandomisation réussie ou du moins de progrès dans la démonstration de preuves concrètes vers l' objectif (pas la connexion de dureté aléatoire)?P= BPPP=BPPP=BPP Le seul exemple qui me vient à l'esprit est le test de primalité polynomiale déterministe AKS (même pour cela, il y …
Supposons qu'un algorithme randomisé utilise rrr bits aléatoires. La plus faible probabilité d'erreur à laquelle on puisse s'attendre (en deçà d'un algorithme déterministe avec 0 erreur) est de 2−Ω(r)2-Ω(r)2^{-\Omega(r)} . Quels algorithmes randomisés atteignent une telle probabilité d'erreur minimale? Voici quelques exemples qui me viennent à l'esprit: Algorithmes d'échantillonnage, par …
Il existe de nombreuses situations où une "preuve" randomisée est beaucoup plus facile qu'une preuve déterministe, l'exemple canonique étant le test d'identité polynomiale. Question : Existe-t-il des "théorèmes" mathématiques naturels où une preuve randomisée est connue mais pas une preuve déterministe? Par "preuve aléatoire" d'une déclaration PPP je veux dire …
Dans l'article Randomized Primal-Dual analysis of RANKING for Online Bipartite Matching , tout en prouvant que l'algorithme RANKING est -concurrentiel, les auteurs montrent que le dual est réalisable en attente (voir Lemme 3 page 5). Ma question est:( 1 - 1e)(1-1e)\left(1 - \frac{1}{e}\right) Suffit-il que les contraintes linéaires du programme …
Dans les tables de hachage qui résolvent les collisions par sondage linéaire, afin d'assurer les performances attendues de , il est à la fois nécessaire et suffisant que la fonction de hachage provienne d'une famille à 5 indépendants. (Suffisance: "Sondage linéaire avec indépendance constante", Pagh et al. , Nécessité: "Sur …
Je révise un modèle cryptographique. Pour montrer son insuffisance, j'ai conçu un protocole artificiel basé sur l'isomorphisme des graphes. Il est "banal" (et pourtant controversé!) De supposer l'existence d'algorithmes BPP capables de générer "des instances dures du problème d'isomorphisme des graphes". (Avec un témoin d'isomorphisme.) Dans mon protocole artificiel, je …
Adleman a montré en 1978 que BPP⊆P/polyBPP⊆P/poly\mathrm{BPP}\subseteq \mathrm{P/poly} : si une fonction booléenne fff de nnn variables peut être calculée par un circuit booléen probabiliste de taille MMM , alors fff peut également être calculé par un circuit booléen déterministe de taille polynôme en MMM et nnn ; en fait, …
We use cookies and other tracking technologies to improve your browsing experience on our website,
to show you personalized content and targeted ads, to analyze our website traffic,
and to understand where our visitors are coming from.
By continuing, you consent to our use of cookies and other tracking technologies and
affirm you're at least 16 years old or have consent from a parent or guardian.