Questions marquées «shrinkage»

Inclusion de contraintes supplémentaires (généralement une pénalité pour la complexité) dans le processus d'ajustement du modèle. Utilisé pour éviter le surajustement / améliorer la précision prédictive.


5
Vue unifiée sur le retrait: quelle est la relation (le cas échéant) entre le paradoxe de Stein, la régression de la crête et les effets aléatoires dans des modèles mixtes?
Considérons les trois phénomènes suivants. Le paradoxe de Stein: étant donné certaines données de la distribution normale multivariée dans , la moyenne de l'échantillon n'est pas un très bon estimateur de la moyenne vraie. On peut obtenir une estimation avec une erreur quadratique moyenne plus faible si on réduit toutes …


3
Pourquoi l’estimation de la crête devient-elle meilleure que celle des MCO en ajoutant une constante à la diagonale?
Je comprends que l’estimation de la régression de crête est la qui minimise la somme résiduelle du carré et une pénalité sur la taille deβββ\betaββ\beta βridge=(λID+X′X)−1X′y=argmin[RSS+λ∥β∥22]βridge=(λID+X′X)−1X′y=argmin⁡[RSS+λ‖β‖22]\beta_\mathrm{ridge} = (\lambda I_D + X'X)^{-1}X'y = \operatorname{argmin}\big[ \text{RSS} + \lambda \|\beta\|^2_2\big] Cependant, je ne comprends pas tout à fait la signification du fait que …

2
Pourquoi le retrait fonctionne-t-il?
Afin de résoudre les problèmes de sélection de modèle, un certain nombre de méthodes (LASSO, régression de crête, etc.) réduiront les coefficients des variables prédictives vers zéro. Je cherche une explication intuitive de la raison pour laquelle cela améliore la capacité de prédiction. Si le véritable effet de la variable …

6
Est une régression de crête inutile dans les dimensions élevées (
Considérons un bon vieux problème de régression avec prédicteurs et taille d’échantillon . La sagesse habituelle est que l’estimateur OLS va sur-adapter et sera généralement surperformé par l’estimateur de régression de crête:Il est standard d’utiliser la validation croisée pour trouver un paramètre de régularisation optimal . Ici, j'utilise un CV …

2
Quelle est la formule du R-carré ajustée dans lm dans R et comment doit-elle être interprétée?
Quelle est la formule exacte utilisée dans R lm() pour le R au carré ajusté? Comment puis-je l'interpréter? Formules ajustées au carré Il semble exister plusieurs formules pour calculer le R au carré ajusté. Formule de Wherry: 1−(1−R2)(n−1)(n−v)1−(1−R2)(n−1)(n−v)1-(1-R^2)\frac{(n-1)}{(n-v)} La formule de McNemar: 1−(1−R2)(n−1)(n−v−1)1−(1−R2)(n−1)(n−v−1)1-(1-R^2)\frac{(n-1)}{(n-v-1)} Formule du Seigneur: 1−(1−R2)(n+v−1)(n−v−1)1−(1−R2)(n+v−1)(n−v−1)1-(1-R^2)\frac{(n+v-1)}{(n-v-1)} Formule de Stein: …


1
Pourquoi glmnet utilise-t-il un filet élastique «naïf» du papier original Zou & Hastie?
Le papier net élastique original Zou & Hastie (2005) Régularisation et sélection des variables via le filet élastique introduit la fonction de perte nette élastique pour la régression linéaire (ici, je suppose que toutes les variables sont centrées et mises à l'échelle de la variance unitaire): mais appelé "filet élastique …


3
LASSO avec des termes d'interaction - est-ce correct si les effets principaux sont réduits à zéro?
La régression LASSO réduit les coefficients vers zéro, permettant ainsi une sélection efficace du modèle. Je crois que dans mes données, il existe des interactions significatives entre les covariables nominales et continues. Cependant, les «principaux effets» du vrai modèle ne sont pas nécessairement significatifs (non nuls). Bien sûr, je ne …


4
Quelles sont les valeurs correctes pour la précision et le rappel dans les cas de bord?
La précision est définie comme: p = true positives / (true positives + false positives) Est - il exact que, true positiveset false positivesapproche 0, la précision approche 1? Même question pour rappel: r = true positives / (true positives + false negatives) J'implémente actuellement un test statistique où j'ai …
20 precision-recall  data-visualization  logarithm  references  r  networks  data-visualization  standard-deviation  probability  binomial  negative-binomial  r  categorical-data  aggregation  plyr  survival  python  regression  r  t-test  bayesian  logistic  data-transformation  confidence-interval  t-test  interpretation  distributions  data-visualization  pca  genetics  r  finance  maximum  probability  standard-deviation  probability  r  information-theory  references  computational-statistics  computing  references  engineering-statistics  t-test  hypothesis-testing  independence  definition  r  censoring  negative-binomial  poisson-distribution  variance  mixed-model  correlation  intraclass-correlation  aggregation  interpretation  effect-size  hypothesis-testing  goodness-of-fit  normality-assumption  small-sample  distributions  regression  normality-assumption  t-test  anova  confidence-interval  z-statistic  finance  hypothesis-testing  mean  model-selection  information-geometry  bayesian  frequentist  terminology  type-i-and-ii-errors  cross-validation  smoothing  splines  data-transformation  normality-assumption  variance-stabilizing  r  spss  stata  python  correlation  logistic  logit  link-function  regression  predictor  pca  factor-analysis  r  bayesian  maximum-likelihood  mcmc  conditional-probability  statistical-significance  chi-squared  proportion  estimation  error  shrinkage  application  steins-phenomenon 

1
Pourquoi l'estimateur de James-Stein est-il appelé un estimateur de «rétrécissement»?
J'ai lu sur l'estimateur de James-Stein. Il est défini, dans ces notes , comme θ^=(1−p−2∥X∥2)Xθ^=(1−p−2‖X‖2)X \hat{\theta}=\left(1 - \frac{p-2}{\|X\|^2}\right)X J'ai lu la preuve mais je ne comprends pas l'énoncé suivant: Géométriquement, l'estimateur de James – Stein rétrécit chaque composante de XXX vers l'origine ... Que signifie exactement "rétrécit chaque composant de …


En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.