Questions marquées «self-study»

Un exercice de routine à partir d'un manuel, d'un cours ou d'un test utilisé pour une classe ou une auto-étude. La politique de cette communauté est de «fournir des conseils utiles» pour ces questions plutôt que des réponses complètes.

3
Lemme de Neyman-Pearson
J'ai lu le lemme de Neyman – Pearson dans le livre Introduction to the Theory of Statistics de Mood, Graybill et Boes. Mais je n'ai pas compris le lemme. Quelqu'un peut-il m'expliquer le lemme en termes clairs? Que dit-il? Lemme de Neyman-Pearson: Soit X1,…,XnX1,…,XnX_1,\ldots,X_n un échantillon aléatoire de f(x;θ)f(x;θ)f(x;\theta) , …


1
Différence entre les modèles de Markov cachés et le filtre à particules (et le filtre de Kalman)
Voici ma vieille question Je voudrais demander si quelqu'un connaît la différence (s'il y a une différence) entre les modèles de Markov cachés (HMM) et le filtre à particules (PF), et par conséquent le filtre de Kalman, ou dans quelles circonstances nous utilisons quel algorithme. Je suis étudiant et je …


4
Comment projeter un nouveau vecteur sur l'espace PCA?
Après avoir effectué l'analyse des composants principaux (PCA), je souhaite projeter un nouveau vecteur sur l'espace PCA (c'est-à-dire trouver ses coordonnées dans le système de coordonnées PCA). J'ai calculé PCA en langage R en utilisant prcomp. Maintenant, je devrais pouvoir multiplier mon vecteur par la matrice de rotation PCA. Les …
21 r  pca  r  variance  heteroscedasticity  misspecification  distributions  time-series  data-visualization  modeling  histogram  kolmogorov-smirnov  negative-binomial  likelihood-ratio  econometrics  panel-data  categorical-data  scales  survey  distributions  pdf  histogram  correlation  algorithms  r  gpu  parallel-computing  approximation  mean  median  references  sample-size  normality-assumption  central-limit-theorem  rule-of-thumb  confidence-interval  estimation  mixed-model  psychometrics  random-effects-model  hypothesis-testing  sample-size  dataset  large-data  regression  standard-deviation  variance  approximation  hypothesis-testing  variance  central-limit-theorem  kernel-trick  kernel-smoothing  error  sampling  hypothesis-testing  normality-assumption  philosophical  confidence-interval  modeling  model-selection  experiment-design  hypothesis-testing  statistical-significance  power  asymptotics  information-retrieval  anova  multiple-comparisons  ancova  classification  clustering  factor-analysis  psychometrics  r  sampling  expectation-maximization  markov-process  r  data-visualization  correlation  regression  statistical-significance  degrees-of-freedom  experiment-design  r  regression  curve-fitting  change-point  loess  machine-learning  classification  self-study  monte-carlo  markov-process  references  mathematical-statistics  data-visualization  python  cart  boosting  regression  classification  robust  cart  survey  binomial  psychometrics  likert  psychology  asymptotics  multinomial 



2
Comment contrôlez-vous un facteur / variable?
À ma connaissance, "Contrôle" peut avoir deux significations dans les statistiques. Groupe témoin: dans une expérience, aucun traitement n'est administré au membre du groupe témoin. Ex: Placebo vs Drug: vous donnez des médicaments à un groupe et non à l'autre (contrôle), qui est également appelé «expérience contrôlée». Contrôle d'une variable: …

2
Supposons que
Quelle est la façon la plus simple de vérifier que l'énoncé suivant est vrai? Supposons que . Afficher .Y1,…,Yn∼iidExp(1)Y1,…,Yn∼iidExp(1)Y_1, \dots, Y_n \overset{\text{iid}}{\sim} \text{Exp}(1)∑ni=1(Yi−Y(1))∼Gamma(n−1,1)∑i=1n(Yi−Y(1))∼Gamma(n−1,1)\sum_{i=1}^{n}(Y_i - Y_{(1)}) \sim \text{Gamma}(n-1, 1) Notez que .Y(1)=min1≤i≤nYiY(1)=min1≤i≤nYiY_{(1)} = \min\limits_{1 \leq i \leq n}Y_i Par X∼Exp(β)X∼Exp(β)X \sim \text{Exp}(\beta) , cela signifie que fX(x)=1βe−x/β⋅1{x>0}fX(x)=1βe−x/β⋅1{x>0}f_{X}(x) = \dfrac{1}{\beta}e^{-x/\beta} \cdot \mathbf{1}_{\{x …


1
Preuve de la formule LOOCV
D'après An Introduction to Statistical Learning de James et al., L'estimation de validation croisée avec oubli (LOOCV) est définie par CV(n)=1n∑i=1nMSEiCV(n)=1n∑i=1nMSEi\text{CV}_{(n)} = \dfrac{1}{n}\sum\limits_{i=1}^{n}\text{MSE}_i where MSEi=(yi−y^i)2MSEi=(yi−y^i)2\text{MSE}_i = (y_i-\hat{y}_i)^2. Without proof, equation (5.2) states that for a least-squares or polynomial regression (whether this applies to regression on just one variable is unknown …





En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.