Questions marquées «metropolis-hastings»

Un type spécial d'algorithme de Markov Chain Monte Carlo (MCMC) utilisé pour simuler à partir de distributions de probabilités complexes. Il est validé par la théorie des chaînes de Markov et offre un large éventail d'implémentations possibles.

1
Quelle est la différence entre l'échantillonnage Metropolis Hastings, Gibbs, Importance et Rejection?
J'ai essayé d'apprendre les méthodes MCMC et j'ai découvert l'échantillonnage de Hastings, Gibbs, Importance et Reject dans Metropolis. Certaines de ces différences sont évidentes, c’est-à-dire que Gibbs est un cas particulier de Metropolis Hastings lorsque nous avons les conditions complètes, alors que d’autres sont moins évidentes, comme lorsque nous voulons …

1
Quelles sont les améliorations bien connues par rapport aux algorithmes MCMC manuels que les gens utilisent pour l'inférence bayésienne?
Lorsque je code une simulation Monte Carlo pour un problème et que le modèle est assez simple, j'utilise un échantillonnage Gibbs très basique. Lorsqu'il n'est pas possible d'utiliser l'échantillonnage de Gibbs, je code le manuel Metropolis-Hastings que j'ai appris il y a des années. La seule pensée que je lui …




1
Quand utiliserait-on l'échantillonnage de Gibbs au lieu de Metropolis-Hastings?
Il existe différents types d'algorithmes MCMC: Metropolis-Hastings Gibbs Échantillonnage d'importance / rejet (lié). Pourquoi utiliser un échantillonnage de Gibbs au lieu de Metropolis-Hastings? Je soupçonne qu'il y a des cas où l'inférence est plus traitable avec l'échantillonnage de Gibbs qu'avec Metropolis-Hastings, mais je ne suis pas clair sur les détails.

1
Intégration Metropolis-Hastings - pourquoi ma stratégie ne fonctionne-t-elle pas?
Supposons que j'ai une fonction g(x)g(x)g(x) que je souhaite intégrer ∫∞−∞g(x)dx.∫−∞∞g(x)dx. \int_{-\infty}^\infty g(x) dx. Bien sûr, en supposant que g(x)g(x)g(x) passe à zéro aux points d'extrémité, pas d'explosions, belle fonction. Une façon avec laquelle j'ai joué est d'utiliser l'algorithme Metropolis-Hastings pour générer une liste d'échantillons x1,x2,…,xnx1,x2,…,xnx_1, x_2, \dots, x_n partir …

1
Stan
Je parcourais la documentation de Stan qui peut être téléchargée ici . J'étais particulièrement intéressé par leur implémentation du diagnostic Gelman-Rubin. Le document original Gelman & Rubin (1992) définit le facteur de réduction d'échelle potentiel (PSRF) comme suit: Soit Xi,1,…,Xi,NXi,1,…,Xi,NX_{i,1}, \dots , X_{i,N} la iii ème chaîne de Markov échantillonnée, …




1
Comprendre MCMC et l'algorithme Metropolis-Hastings
Au cours des derniers jours, j'ai essayé de comprendre comment fonctionne Markov Chain Monte Carlo (MCMC). En particulier, j'ai essayé de comprendre et de mettre en œuvre l'algorithme Metropolis-Hastings. Jusqu'à présent, je pense que j'ai une compréhension globale de l'algorithme, mais il y a quelques choses qui ne sont pas …


1
R / mgcv: Pourquoi les produits tenseurs te () et ti () produisent-ils des surfaces différentes?
Le mgcvpackage pour Ra deux fonctions pour ajuster les interactions des produits tensoriels: te()et ti(). Je comprends la division de base du travail entre les deux (ajustement d'une interaction non linéaire vs décomposition de cette interaction en effets principaux et interaction). Ce que je ne comprends pas, c'est pourquoi te(x1, …
11 r  gam  mgcv  conditional-probability  mixed-model  references  bayesian  estimation  conditional-probability  machine-learning  optimization  gradient-descent  r  hypothesis-testing  wilcoxon-mann-whitney  time-series  bayesian  inference  change-point  time-series  anova  repeated-measures  statistical-significance  bayesian  contingency-tables  regression  prediction  quantiles  classification  auc  k-means  scikit-learn  regression  spatial  circular-statistics  t-test  effect-size  cohens-d  r  cross-validation  feature-selection  caret  machine-learning  modeling  python  optimization  frequentist  correlation  sample-size  normalization  group-differences  heteroscedasticity  independence  generalized-least-squares  lme4-nlme  references  mcmc  metropolis-hastings  optimization  r  logistic  feature-selection  separation  clustering  k-means  normal-distribution  gaussian-mixture  kullback-leibler  java  spark-mllib  data-visualization  categorical-data  barplot  hypothesis-testing  statistical-significance  chi-squared  type-i-and-ii-errors  pca  scikit-learn  conditional-expectation  statistical-significance  meta-analysis  intuition  r  time-series  multivariate-analysis  garch  machine-learning  classification  data-mining  missing-data  cart  regression  cross-validation  matrix-decomposition  categorical-data  repeated-measures  chi-squared  assumptions  contingency-tables  prediction  binary-data  trend  test-for-trend  matrix-inverse  anova  categorical-data  regression-coefficients  standard-error  r  distributions  exponential  interarrival-time  copula  log-likelihood  time-series  forecasting  prediction-interval  mean  standard-error  meta-analysis  meta-regression  network-meta-analysis  systematic-review  normal-distribution  multiple-regression  generalized-linear-model  poisson-distribution  poisson-regression  r  sas  cohens-kappa 


En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.