Questions marquées «mean»

La valeur attendue d'une variable aléatoire; ou une mesure d'emplacement pour un échantillon.

2
Existe-t-il un exemple de l’inégalité unilatérale de Chebyshev?
Je suis intéressé par la version unilatérale suivante de Cantelli de l'inégalité de Chebyshev : P(X−E(X)≥t)≤Var(X)Var(X)+t2.P(X−E(X)≥t)≤Var(X)Var(X)+t2. \mathbb P(X - \mathbb E (X) \geq t) \leq \frac{\mathrm{Var}(X)}{\mathrm{Var}(X) + t^2} \,. En gros, si vous connaissez la moyenne et la variance de la population, vous pouvez calculer la limite supérieure de la …


8
Remplacer les valeurs aberrantes par une moyenne
Cette question a été posée par mon ami qui n'est pas averti d'Internet. Je n'ai aucun fond de statistiques et j'ai cherché autour d'Internet pour cette question. La question est: est-il possible de remplacer les valeurs aberrantes par une valeur moyenne? si c'est possible, existe-t-il des références de livres / …



2
Existe-t-il un intervalle de confiance non paramétrique fiable pour la moyenne d'une distribution asymétrique?
Des distributions très asymétriques telles que le log-normal n'entraînent pas des intervalles de confiance bootstrap précis. Voici un exemple montrant que les zones arrière gauche et droite sont loin de la valeur idéale de 0,025, quelle que soit la méthode d'amorçage que vous essayez dans R: require(boot) n <- 25 …

5
Comment gérer les données hiérarchiques / imbriquées dans l'apprentissage automatique
Je vais expliquer mon problème avec un exemple. Supposons que vous souhaitiez prédire le revenu d'un individu en fonction de certains attributs: {âge, sexe, pays, région, ville}. Vous avez un ensemble de données de formation comme ça train <- data.frame(CountryID=c(1,1,1,1, 2,2,2,2, 3,3,3,3), RegionID=c(1,1,1,2, 3,3,4,4, 5,5,5,5), CityID=c(1,1,2,3, 4,5,6,6, 7,7,7,8), Age=c(23,48,62,63, 25,41,45,19, …
29 regression  machine-learning  multilevel-analysis  correlation  dataset  spatial  paired-comparisons  cross-correlation  clustering  aic  bic  dependent-variable  k-means  mean  standard-error  measurement-error  errors-in-variables  regression  multiple-regression  pca  linear-model  dimensionality-reduction  machine-learning  neural-networks  deep-learning  conv-neural-network  computer-vision  clustering  spss  r  weighted-data  wilcoxon-signed-rank  bayesian  hierarchical-bayesian  bugs  stan  distributions  categorical-data  variance  ecology  r  survival  regression  r-squared  descriptive-statistics  cross-section  maximum-likelihood  factor-analysis  likert  r  multiple-imputation  propensity-scores  distributions  t-test  logit  probit  z-test  confidence-interval  poisson-distribution  deep-learning  conv-neural-network  residual-networks  r  survey  wilcoxon-mann-whitney  ranking  kruskal-wallis  bias  loss-functions  frequentist  decision-theory  risk  machine-learning  distributions  normal-distribution  multivariate-analysis  inference  dataset  factor-analysis  survey  multilevel-analysis  clinical-trials 

10
Régression vers la moyenne contre l'erreur du joueur
D'une part, j'ai la régression à la moyenne et d'autre part j'ai l' erreur du joueur . Le sophisme de Gambler est défini par Miller et Sanjurjo (2019) comme «la croyance erronée que les séquences aléatoires ont une tendance systématique au renversement, c'est-à-dire que les séquences de résultats similaires sont …

1
Les degrés de liberté peuvent-ils être un nombre non entier?
Lorsque j'utilise GAM, cela me donne un DF résiduel de (dernière ligne du code). Qu'est-ce que ça veut dire? Au-delà de l'exemple GAM, en général, le nombre de degrés de liberté peut-il être un nombre non entier?26.626.626.6 > library(gam) > summary(gam(mpg~lo(wt),data=mtcars)) Call: gam(formula = mpg ~ lo(wt), data = mtcars) …
27 r  degrees-of-freedom  gam  machine-learning  pca  lasso  probability  self-study  bootstrap  expected-value  regression  machine-learning  linear-model  probability  simulation  random-generation  machine-learning  distributions  svm  libsvm  classification  pca  multivariate-analysis  feature-selection  archaeology  r  regression  dataset  simulation  r  regression  time-series  forecasting  predictive-models  r  mean  sem  lavaan  machine-learning  regularization  regression  conv-neural-network  convolution  classification  deep-learning  conv-neural-network  regression  categorical-data  econometrics  r  confirmatory-factor  scale-invariance  self-study  unbiased-estimator  mse  regression  residuals  sampling  random-variable  sample  probability  random-variable  convergence  r  survival  weibull  references  autocorrelation  hypothesis-testing  distributions  correlation  regression  statistical-significance  regression-coefficients  univariate  categorical-data  chi-squared  regression  machine-learning  multiple-regression  categorical-data  linear-model  pca  factor-analysis  factor-rotation  classification  scikit-learn  logistic  p-value  regression  panel-data  multilevel-analysis  variance  bootstrap  bias  probability  r  distributions  interquartile  time-series  hypothesis-testing  normal-distribution  normality-assumption  kurtosis  arima  panel-data  stata  clustered-standard-errors  machine-learning  optimization  lasso  multivariate-analysis  ancova  machine-learning  cross-validation 



3
Que peut-on conclure sur les données lorsque la moyenne arithmétique est très proche de la moyenne géométrique?
Y a-t-il quelque chose d'important dans une moyenne géométrique et une moyenne arithmétique qui se rapprochent très près, disons ~ 0,1%? Quelles conjectures peut-on faire sur un tel ensemble de données? J'ai travaillé sur l'analyse d'un ensemble de données et je remarque que, ironiquement, les valeurs sont très, très proches. …




En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.