De plus, si vous souhaitez calculer l'intervalle de confiance de Fieller sans utiliser mratios
(généralement parce que vous ne voulez pas un ajustement lm simple mais par exemple un ajustement glmer ou glmer.nb), vous pouvez utiliser la FiellerRatioCI
fonction suivante , avec modèle la sortie du modèle, nommez le nom du paramètre numérateur, bnommez le nom du paramètre dénomérateur. Vous pouvez également utiliser directement la fonction FiellerRatioCI_basic donnant, a, b et la matrice de covariance entre a et b.
Notez que l'alpha ici est 0,05 et "codé en dur" dans les 1,96 du code. Vous pouvez les remplacer par n'importe quel niveau d'étudiant que vous préférez.
FiellerRatioCI <- function (x, ...) { # generic Biomass Equilibrium Level
UseMethod("FiellerRatioCI", x)
}
FiellerRatioCI_basic <- function(a,b,V,alpha=0.05){
theta <- a/b
v11 <- V[1,1]
v12 <- V[1,2]
v22 <- V[2,2]
z <- qnorm(1-alpha/2)
g <- z*v22/b^2
C <- sqrt(v11 - 2*theta*v12 + theta^2 * v22 - g*(v11-v12^2/v22))
minS <- (1/(1-g))*(theta- g*v12/v22 - z/b * C)
maxS <- (1/(1-g))*(theta- g*v12/v22 + z/b * C)
return(c(ratio=theta,min=minS,max=maxS))
}
FiellerRatioCI.glmerMod <- function(model,aname,bname){
V <- vcov(model)
a<-as.numeric(unique(coef(model)$culture[aname]))
b<-as.numeric(unique(coef(model)$culture[bname]))
return(FiellerRatioCI_basic(a,b,V[c(aname,bname),c(aname,bname)]))
}
FiellerRatioCI.glm <- function(model,aname,bname){
V <- vcov(model)
a <- coef(model)[aname]
b <- coef(model)[bname]
return(FiellerRatioCI_basic(a,b,V[c(aname,bname),c(aname,bname)]))
}
Exemple (basé sur l'exemple de base standard glm):
counts <- c(18,17,15,20,10,20,25,13,12)
outcome <- gl(3,1,9)
treatment <- gl(3,3)
glm.D93 <- glm(counts ~ outcome + treatment, family = poisson())
FiellerRatioCI(glm.D93,"outcome2","outcome3")
ratio.outcome2 min max
1.550427 -2.226870 17.880574