Questions marquées «estimation»

Cette balise est trop générale; veuillez fournir une balise plus spécifique. Pour les questions sur les propriétés d'estimateurs spécifiques, utilisez plutôt la balise [estimateurs].


1
Quelle est l'intuition derrière les échantillons échangeables sous l'hypothèse nulle?
Les tests de permutation (également appelés test de randomisation, test de re-randomisation ou test exact) sont très utiles et s'avèrent utiles lorsque l'hypothèse de distribution normale requise par exemple t-testn'est pas remplie et lorsque la transformation des valeurs par classement des un test non paramétrique comme Mann-Whitney-U-testcela entraînerait la perte …
15 hypothesis-testing  permutation-test  exchangeability  r  statistical-significance  loess  data-visualization  normal-distribution  pdf  ggplot2  kernel-smoothing  probability  self-study  expected-value  normal-distribution  prior  correlation  time-series  regression  heteroscedasticity  estimation  estimators  fisher-information  data-visualization  repeated-measures  binary-data  panel-data  mathematical-statistics  coefficient-of-variation  normal-distribution  order-statistics  regression  machine-learning  one-class  probability  estimators  forecasting  prediction  validation  finance  measurement-error  variance  mean  spatial  monte-carlo  data-visualization  boxplot  sampling  uniform  chi-squared  goodness-of-fit  probability  mixture  theory  gaussian-mixture  regression  statistical-significance  p-value  bootstrap  regression  multicollinearity  correlation  r  poisson-distribution  survival  regression  categorical-data  ordinal-data  ordered-logit  regression  interaction  time-series  machine-learning  forecasting  cross-validation  binomial  multiple-comparisons  simulation  false-discovery-rate  r  clustering  frequency  wilcoxon-mann-whitney  wilcoxon-signed-rank  r  svm  t-test  missing-data  excel  r  numerical-integration  r  random-variable  lme4-nlme  mixed-model  weighted-regression  power-law  errors-in-variables  machine-learning  classification  entropy  information-theory  mutual-information 

2
Estimation de la distribution postérieure de la covariance d'un gaussien multivarié
J'ai besoin "d'apprendre" la distribution d'un gaussien bivarié avec peu d'échantillons, mais une bonne hypothèse sur la distribution précédente, donc je voudrais utiliser l'approche bayésienne. J'ai défini mon avant: P(μ)∼N(μ0,Σ0)P(μ)∼N(μ0,Σ0) \mathbf{P}(\mathbf{\mu}) \sim \mathcal{N}(\mathbf{\mu_0},\mathbf{\Sigma_0}) μ0=[00] Σ0=[160027]μ0=[00] Σ0=[160027] \mathbf{\mu_0} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \ \ \ \mathbf{\Sigma_0} = \begin{bmatrix} 16 …

2
Estimation des paramètres d'une distribution normale: médiane au lieu de moyenne?
L'approche courante pour estimer les paramètres d'une distribution normale consiste à utiliser la moyenne et l'écart-type / variance de l'échantillon. Cependant, s'il y a des valeurs aberrantes, la médiane et l'écart médian par rapport à la médiane devraient être beaucoup plus robustes, non? Sur certains ensembles de données que j'ai …





4
Pourquoi avons-nous besoin d'un estimateur pour être cohérent?
Je pense que j'ai déjà compris la définition mathématique d'un estimateur cohérent. Corrige moi si je me trompe: WnWnW_n est un estimateur cohérent pour siθθ\theta∀ϵ>0∀ϵ>0\forall \epsilon>0 limn→∞P(|Wn−θ|>ϵ)=0,∀θ∈Θlimn→∞P(|Wn−θ|>ϵ)=0,∀θ∈Θ\lim_{n\to\infty} P(|W_n - \theta|> \epsilon) = 0, \quad \forall\theta \in \Theta Où, ΘΘ\Theta est l'espace paramétrique. Mais je veux comprendre la nécessité pour un …

4
Comment conserver les variables invariantes dans le temps dans un modèle à effets fixes
J'ai des données sur les employés d'une grande entreprise italienne sur dix ans et j'aimerais voir comment l'écart entre les sexes dans les gains des hommes et des femmes a changé au fil du temps. À cette fin, je gère l'OLS groupé: yit=X′itβ+δmalei+∑t=110γtdt+εityit=Xit′β+δmalei+∑t=110γtdt+εit y_{it} = X'_{it}\beta + \delta {\rm male}_i …

1
Qu'est-ce que l '«attente de probabilité maximale ciblée»?
J'essaie de comprendre certains articles de Mark van der Laan. Il est un statisticien théorique à Berkeley travaillant sur des problèmes qui se chevauchent de manière significative avec l'apprentissage automatique. Un problème pour moi (en plus des mathématiques approfondies) est qu'il finit souvent par décrire des approches d'apprentissage machine familières …


2
Pour quels modèles le biais du MLE chute-t-il plus vite que la variance?
θ^θ^\hat\thetaθ∗θ∗\theta^*nnn∥θ^−θ∗∥‖θ^−θ∗‖\lVert\hat\theta-\theta^*\rVertO(1/n−−√)O(1/n)O(1/\sqrt n)∥Eθ^−θ∗∥‖Eθ^−θ∗‖\lVert \mathbb E\hat\theta - \theta^*\rVert∥Eθ^−θ^∥‖Eθ^−θ^‖\lVert \mathbb E\hat\theta - \hat\theta\rVertO(1/n−−√)O(1/n)O(1/\sqrt{n}) Je m'intéresse aux modèles qui ont un biais qui rétrécit plus rapidement que O(1/n−−√)O(1/n)O(1/\sqrt n) , mais où l'erreur ne diminue pas à ce rythme plus rapide car l'écart se rétrécit toujours comme O(1/n−−√)O(1/n)O(1/\sqrt n) . En particulier, je voudrais …



En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.