Questions marquées «normal-distribution»

La distribution normale ou gaussienne a une fonction de densité qui est une courbe symétrique en forme de cloche. C'est l'une des distributions les plus importantes en statistique. Utilisez la balise [normality] pour poser des questions sur les tests de normalité.



2
Dérivation des distributions conditionnelles d'une distribution normale multivariée
Nous avons un vecteur normal multivarié Y∼N(μ,Σ)Y∼N(μ,Σ){\boldsymbol Y} \sim \mathcal{N}(\boldsymbol\mu, \Sigma) . Envisagez de partitionner μμ\boldsymbol\mu et YY{\boldsymbol Y} en μ=[μ1μ2]μ=[μ1μ2]\boldsymbol\mu = \begin{bmatrix} \boldsymbol\mu_1 \\ \boldsymbol\mu_2 \end{bmatrix} Y=[y1y2]Y=[y1y2]{\boldsymbol Y}=\begin{bmatrix}{\boldsymbol y}_1 \\ {\boldsymbol y}_2 \end{bmatrix} avec une partition similaire de ΣΣ\Sigma en [Σ11Σ21Σ12Σ22][Σ11Σ12Σ21Σ22] \begin{bmatrix} \Sigma_{11} & \Sigma_{12}\\ \Sigma_{21} & \Sigma_{22} \end{bmatrix} …

3
Est-il possible d'avoir une paire de variables aléatoires gaussiennes pour lesquelles la distribution conjointe n'est pas gaussienne?
Quelqu'un m'a posé cette question lors d'un entretien d'embauche et j'ai répondu que leur distribution commune est toujours gaussienne. Je pensais que je pouvais toujours écrire une gaussienne à deux variables avec leurs moyennes, leur variance et leurs covariances. Je me demande s’il peut exister un cas pour lequel la …


3
Un exemple: régression LASSO utilisant glmnet pour les résultats binaires
Je commence à me familiariser avec l’utilisation de glmnetavec LASSO Regression, où mon résultat d’intérêt est dichotomique. J'ai créé un petit cadre de données fictif ci-dessous: age <- c(4, 8, 7, 12, 6, 9, 10, 14, 7) gender <- c(1, 0, 1, 1, 1, 0, 1, 0, 0) bmi_p <- …
78 r  self-study  lasso  regression  interpretation  anova  statistical-significance  survey  conditional-probability  independence  naive-bayes  graphical-model  r  time-series  forecasting  arima  r  forecasting  exponential-smoothing  bootstrap  outliers  r  regression  poisson-distribution  zero-inflation  genetic-algorithms  machine-learning  feature-selection  cart  categorical-data  interpretation  descriptive-statistics  variance  multivariate-analysis  covariance-matrix  r  data-visualization  generalized-linear-model  binomial  proportion  pca  matlab  svd  time-series  correlation  spss  arima  chi-squared  curve-fitting  text-mining  zipf  probability  categorical-data  distance  group-differences  bhattacharyya  regression  variance  mean  data-visualization  variance  clustering  r  standard-error  association-measure  somers-d  normal-distribution  integral  numerical-integration  bayesian  clustering  python  pymc  nonparametric-bayes  machine-learning  svm  kernel-trick  hyperparameter  poisson-distribution  mean  continuous-data  univariate  missing-data  dag  python  likelihood  dirichlet-distribution  r  anova  hypothesis-testing  statistical-significance  p-value  rating  data-imputation  censoring  threshold 

7
Test t pour non normal quand N> 50?
Il y a longtemps, j'ai appris qu'une distribution normale était nécessaire pour utiliser un test T à deux échantillons. Aujourd'hui, une collègue m'a dit qu'elle avait appris que pour N> 50, une distribution normale n'était pas nécessaire. Est-ce vrai? Si vrai est-ce à cause du théorème de la limite centrale?


5
Théorème central limite pour les médianes d'échantillon
Si je calcule la médiane d'un nombre suffisamment grand d'observations tirées de la même distribution, le théorème limite central énonce-t-il que la distribution des médianes se rapprochera d'une distribution normale? Si j'ai bien compris, cela est vrai avec les moyennes d'un grand nombre d'échantillons, mais est-ce aussi vrai avec les …

14
Quelle est la caractérisation la plus surprenante de la distribution gaussienne (normale)?
Une distribution gaussienne normalisée sur peut être définie en donnant explicitement sa densité: 1RR\mathbb{R}12π−−√e−x2/212πe−x2/2 \frac{1}{\sqrt{2\pi}}e^{-x^2/2} ou sa fonction caractéristique. Comme rappelé dans cette question, il s'agit également de la seule distribution pour laquelle la moyenne et la variance de l'échantillon sont indépendantes. Quelles sont les autres caractérisations alternatives surprenantes des …


3
Quelle est l'intuition derrière les distributions gaussiennes conditionnelles?
Supposons que X∼N2(μ,Σ)X∼N2(μ,Σ)\mathbf{X} \sim N_{2}(\mathbf{\mu}, \mathbf{\Sigma}) . Alors la distribution conditionnelle de X1X1X_1 étant donné que X2=x2X2=x2X_2 = x_2 est multivariée, normalement distribuée, avec la moyenne: E[P(X1|X2=x2)]=μ1+σ12σ22(x2−μ2)E[P(X1|X2=x2)]=μ1+σ12σ22(x2−μ2) E[P(X_1 | X_2 = x_2)] = \mu_1+\frac{\sigma_{12}}{\sigma_{22}}(x_2-\mu_2) et de variance: Var[P(X1|X2=x2)]=σ11−σ212σ22Var[P(X1|X2=x2)]=σ11−σ122σ22{\rm Var}[P(X_1 | X_2 = x_2)] = \sigma_{11}-\frac{\sigma_{12}^{2}}{\sigma_{22}} Il est logique que la …




En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.