Questions marquées «machine-learning»

Les algorithmes d'apprentissage automatique construisent un modèle des données d'apprentissage. Le terme «apprentissage automatique» est vaguement défini; il comprend ce qu'on appelle aussi l'apprentissage statistique, l'apprentissage par renforcement, l'apprentissage non supervisé, etc. TOUJOURS AJOUTER UN ÉTIQUETTE PLUS SPÉCIFIQUE.



5
Distinguer deux groupes en statistiques et en machine learning: test d'hypothèse vs classification vs clustering
Supposons que j'ai deux groupes de données, étiquetés A et B (contenant chacun par exemple 200 échantillons et 1 fonction), et je veux savoir s'ils sont différents. Je pourrais: a) effectuer un test statistique (par exemple un test t) pour voir s'ils sont statistiquement différents. b) utiliser l'apprentissage automatique supervisé …

5
Comment gérer les données hiérarchiques / imbriquées dans l'apprentissage automatique
Je vais expliquer mon problème avec un exemple. Supposons que vous souhaitiez prédire le revenu d'un individu en fonction de certains attributs: {âge, sexe, pays, région, ville}. Vous avez un ensemble de données de formation comme ça train <- data.frame(CountryID=c(1,1,1,1, 2,2,2,2, 3,3,3,3), RegionID=c(1,1,1,2, 3,3,4,4, 5,5,5,5), CityID=c(1,1,2,3, 4,5,6,6, 7,7,7,8), Age=c(23,48,62,63, 25,41,45,19, …
29 regression  machine-learning  multilevel-analysis  correlation  dataset  spatial  paired-comparisons  cross-correlation  clustering  aic  bic  dependent-variable  k-means  mean  standard-error  measurement-error  errors-in-variables  regression  multiple-regression  pca  linear-model  dimensionality-reduction  machine-learning  neural-networks  deep-learning  conv-neural-network  computer-vision  clustering  spss  r  weighted-data  wilcoxon-signed-rank  bayesian  hierarchical-bayesian  bugs  stan  distributions  categorical-data  variance  ecology  r  survival  regression  r-squared  descriptive-statistics  cross-section  maximum-likelihood  factor-analysis  likert  r  multiple-imputation  propensity-scores  distributions  t-test  logit  probit  z-test  confidence-interval  poisson-distribution  deep-learning  conv-neural-network  residual-networks  r  survey  wilcoxon-mann-whitney  ranking  kruskal-wallis  bias  loss-functions  frequentist  decision-theory  risk  machine-learning  distributions  normal-distribution  multivariate-analysis  inference  dataset  factor-analysis  survey  multilevel-analysis  clinical-trials 


3
Différence entre un SVM et un perceptron
Je suis un peu confus avec la différence entre un SVM et un perceptron. Permettez-moi d'essayer de résumer ma compréhension ici, et n'hésitez pas à corriger où je me trompe et à compléter ce que j'ai manqué. Le Perceptron n'essaie pas d'optimiser la "distance" de séparation. Tant qu'il trouve un …


6
Procédure de sélection variable pour la classification binaire
Quelle est la sélection de variable / caractéristique que vous préférez pour la classification binaire quand il y a beaucoup plus de variables / caractéristique que d'observations dans l'ensemble d'apprentissage? Le but ici est de discuter de la procédure de sélection des caractéristiques qui réduit le mieux l'erreur de classification. …




3



3
Pourquoi l'AUC est-elle plus élevée pour un classificateur moins précis que pour un classificateur plus précis?
J'ai deux classificateurs A: réseau bayésien naïf B: réseau bayésien d'arbre (connecté individuellement) En termes de précision et d'autres mesures, A fonctionne comparativement moins bien que B. Cependant, lorsque j'utilise les packages R ROCR et AUC pour effectuer une analyse ROC, il s'avère que l'AUC pour A est plus élevée …

En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.