Questions marquées «deep-learning»

un nouveau domaine de recherche en Machine Learning concernant les technologies utilisées pour l'apprentissage des représentations hiérarchiques des données, principalement effectuées avec des réseaux de neurones profonds (c'est-à-dire des réseaux avec deux ou plusieurs couches cachées), mais aussi avec une sorte de modèles graphiques probabilistes.




1
Combien de cellules LSTM dois-je utiliser?
Existe-t-il des règles générales (ou des règles réelles) concernant la quantité minimale, maximale et "raisonnable" de cellules LSTM que je devrais utiliser? Plus précisément, je me rapporte à BasicLSTMCell de TensorFlow et à la num_unitspropriété. Veuillez supposer que j'ai un problème de classification défini par: t - number of time …
12 rnn  machine-learning  r  predictive-modeling  random-forest  python  language-model  sentiment-analysis  encoding  machine-learning  deep-learning  neural-network  dataset  caffe  classification  xgboost  multiclass-classification  unbalanced-classes  time-series  descriptive-statistics  python  r  clustering  machine-learning  python  deep-learning  tensorflow  machine-learning  python  predictive-modeling  probability  scikit-learn  svm  machine-learning  python  classification  gradient-descent  regression  research  python  neural-network  deep-learning  convnet  keras  python  tensorflow  machine-learning  deep-learning  tensorflow  python  r  bigdata  visualization  rstudio  pandas  pyspark  dataset  time-series  multilabel-classification  machine-learning  neural-network  ensemble-modeling  kaggle  machine-learning  linear-regression  cnn  convnet  machine-learning  tensorflow  association-rules  machine-learning  predictive-modeling  training  model-selection  neural-network  keras  deep-learning  deep-learning  convnet  image-classification  predictive-modeling  prediction  machine-learning  python  classification  predictive-modeling  scikit-learn  machine-learning  python  random-forest  sampling  training  recommender-system  books  python  neural-network  nlp  deep-learning  tensorflow  python  matlab  information-retrieval  search  search-engine  deep-learning  convnet  keras  machine-learning  python  cross-validation  sampling  machine-learning 

2
apprentissage en profondeur pour les tâches non-image non-PNL?
Jusqu'à présent, il existe de nombreuses applications intéressantes pour l'apprentissage en profondeur en vision par ordinateur ou en traitement du langage naturel. Comment est-ce dans d'autres domaines plus traditionnels? Par exemple, j'ai des variables sociodémographiques traditionnelles et peut-être beaucoup de mesures de laboratoire et je veux prédire une certaine maladie. …


3
Existe-t-il de bons modèles de langage prêts à l'emploi pour python?
Je prototype une application et j'ai besoin d'un modèle de langage pour calculer la perplexité sur certaines phrases générées. Existe-t-il un modèle de langage formé en python que je peux facilement utiliser? Quelque chose de simple comme model = LanguageModel('en') p1 = model.perplexity('This is a well constructed sentence') p2 = …
11 python  nlp  language-model  r  statistics  linear-regression  machine-learning  classification  random-forest  xgboost  python  sampling  data-mining  orange  predictive-modeling  recommender-system  statistics  dimensionality-reduction  pca  machine-learning  python  deep-learning  keras  reinforcement-learning  neural-network  image-classification  r  dplyr  deep-learning  keras  tensorflow  lstm  dropout  machine-learning  sampling  categorical-data  data-imputation  machine-learning  deep-learning  machine-learning-model  dropout  deep-network  pandas  data-cleaning  data-science-model  aggregation  python  neural-network  reinforcement-learning  policy-gradients  r  dataframe  dataset  statistics  prediction  forecasting  r  k-means  python  scikit-learn  labels  python  orange  cloud-computing  machine-learning  neural-network  deep-learning  rnn  recurrent-neural-net  logistic-regression  missing-data  deep-learning  autoencoder  apache-hadoop  time-series  data  preprocessing  classification  predictive-modeling  time-series  machine-learning  python  feature-selection  autoencoder  deep-learning  keras  tensorflow  lstm  word-embeddings  predictive-modeling  prediction  machine-learning-model  machine-learning  classification  binary  theory  machine-learning  neural-network  time-series  lstm  rnn  neural-network  deep-learning  keras  tensorflow  convnet  computer-vision 

1
Utiliser un classificateur CNN pré-formé et l'appliquer sur un ensemble de données d'image différent
Comment pourriez-vous optimiser un pré-formé neural network pour l'appliquer à un problème distinct? Souhaitez-vous simplement ajouter plus de couches au modèle pré-formé et le tester sur votre ensemble de données? Par exemple, si la tâche consistait à utiliser un CNN pour classer les groupes de papiers peints , je suis …


2
Quelle est la différence entre la convolution dilatée et la déconvolution?
Ces deux opérations de convolution sont très courantes dans le deep learning en ce moment. J'ai lu sur la couche convolutionnelle dilatée dans cet article: WAVENET: UN MODÈLE GÉNÉRATIF POUR L'AUDIO BRUT et la déconvolution est dans cet article: Réseaux entièrement convolutifs pour la segmentation sémantique Les deux semblent sur-échantillonner …

4
Comment word2vec peut être utilisé pour identifier les mots invisibles et les relier à des données déjà formées
Je travaillais sur le modèle word2vec gensim et je l'ai trouvé très intéressant. Je suis intéressé à trouver comment un mot inconnu / invisible lorsqu'il est vérifié avec le modèle pourra obtenir des termes similaires du modèle formé. Est-ce possible? Word2vec peut-il être modifié pour cela? Ou le corpus de …


3
Qu'est-ce que LSTM, BiLSTM et quand les utiliser?
Je suis très nouveau dans le Deep Learning et je suis particulièrement intéressé à savoir ce que sont LSTM et BiLSTM et quand les utiliser (principaux domaines d'application). Pourquoi LSTM et BILSTM sont-ils plus populaires que RNN? Pouvons-nous utiliser ces architectures d'apprentissage en profondeur dans des problèmes non supervisés?

4
Apprentissage automatique vs apprentissage profond
Je suis un peu confus par la différence entre les termes "Machine Learning" et "Deep Learning". Je l'ai googlé et lu de nombreux articles, mais ce n'est toujours pas très clair pour moi. Une définition connue du Machine Learning par Tom Mitchell est: Un programme informatique est dit apprendre de …

3
Meilleures langues pour le calcul scientifique [fermé]
Fermé . Cette question doit être plus ciblée . Il n'accepte pas actuellement les réponses. Voulez-vous améliorer cette question? Mettez à jour la question afin qu'elle se concentre sur un problème uniquement en modifiant ce message . Fermé il y a 5 ans . Il semble que la plupart des …
10 efficiency  statistics  tools  knowledge-base  machine-learning  neural-network  deep-learning  optimization  hyperparameter  machine-learning  time-series  categorical-data  logistic-regression  python  visualization  bigdata  efficiency  classification  binary  svm  random-forest  logistic-regression  data-mining  sql  experiments  bigdata  efficiency  performance  scalability  distributed  bigdata  nlp  statistics  education  knowledge-base  definitions  machine-learning  recommender-system  evaluation  efficiency  algorithms  parameter  efficiency  scalability  sql  statistics  visualization  knowledge-base  education  machine-learning  r  python  r  text-mining  sentiment-analysis  machine-learning  machine-learning  python  neural-network  statistics  reference-request  machine-learning  data-mining  python  classification  data-mining  bigdata  usecase  apache-hadoop  map-reduce  aws  education  feature-selection  machine-learning  machine-learning  sports  data-formats  hierarchical-data-format  bigdata  apache-hadoop  bigdata  apache-hadoop  python  visualization  knowledge-base  classification  confusion-matrix  accuracy  bigdata  apache-hadoop  bigdata  efficiency  apache-hadoop  distributed  machine-translation  nlp  metadata  data-cleaning  text-mining  python  pandas  machine-learning  python  pandas  scikit-learn  bigdata  machine-learning  databases  clustering  data-mining  recommender-system 

En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.