Questions marquées «algebraic-complexity»

2
Programme GCT de Mulmuley
On prétend parfois que la théorie de la complexité géométrique de Ketan Mulmuley est le seul programme plausible pour régler les questions en suspens de la théorie de la complexité, comme la question P vs NP. Plusieurs théoriciens de la complexité connus ont commenté positivement le programme. Selon Mulmuley, il …





2
Existe-t-il une théorie qui combine théorie des catégories / algèbre abstraite et complexité informatique?
La théorie des catégories et l'algèbre abstraite traitent de la façon dont les fonctions peuvent être combinées avec d'autres fonctions. La théorie de la complexité traite de la difficulté de calculer une fonction. C'est bizarre pour moi que je n'ai vu personne combiner ces domaines d'études, car ils ressemblent à …



1
Dimension VC des polynômes sur semirings tropicaux?
Comme dans cette question, je suis intéressé par le problème vs / pour les circuits tropicaux et (\ min, +) . Cette question se réduit à montrer les limites supérieures de la dimension VC des polynômes sur les semirings tropicaux (voir le théorème 2 ci-dessous). BPPBPP\mathbf{BPP}PP\mathbf{P}polypoly\mathrm{poly} (max,+)(max,+)(\max,+)(min,+)(min,+)(\min,+) Soit RRR un …


3
Garanties de dureté pour AES
De nombreux cryptosystèmes à clé publique ont une sorte de sécurité prouvable. Par exemple, le cryptosystème Rabin est aussi difficile que l'affacturage. Je me demande si ce type de sécurité prouvable existe pour les cryptosystèmes à clé secrète, tels que AES. Sinon, quelle est la preuve qu'il est difficile de …


2
Élimination gaussienne en termes d'action de groupe
L'élimination gaussienne rend le déterminant d'une matrice polynomiale temps calculable. La réduction de la complexité dans le calcul du déterminant, qui est autrement la somme de termes exponentiels, est due à la présence de signes négatifs alternatifs (dont le manque rend le calcul permanent est c'est-à-dire plus difficile que problèmes …

1
Capacité du puzzle à résolution unique (USP)
Dans leur article fondateur Algorithmes théoriques de groupe pour les multiplications matricielles , Cohn, Kleinberg, Szegedy et Umans introduisent le concept de puzzle résolvable de manière unique (défini ci-dessous) et de capacité USP. Ils affirment que Chaudronnier et Winograd, dans leur propre papier révolutionnaire multiplication matrice par des progressions arithmétiques …


En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.