Questions marquées «feature-selection»

Méthodes et principes de sélection d'un sous-ensemble d'attributs à utiliser dans une modélisation ultérieure

2
Quelles fonctionnalités sont généralement utilisées à partir des arbres d'analyse dans le processus de classification en PNL?
J'explore différents types de structures d'arbres d'analyse. Les deux structures d'arbre d'analyse largement connues sont: a) l'arbre d'analyse basé sur les circonscriptions et b) les structures d'arbre d'analyse basées sur les dépendances. Je suis capable d'utiliser les deux types de structures d'arbre d'analyse en utilisant le package Stanford NLP. Cependant, …


1
Importance des caractéristiques avec des caractéristiques catégorielles à cardinalité élevée pour la régression (variable dépendante numérique)
J'essayais d'utiliser les importances de fonctionnalités de Random Forests pour effectuer une sélection de fonctionnalités empiriques pour un problème de régression où toutes les fonctionnalités sont catégoriques et beaucoup d'entre elles ont de nombreux niveaux (de l'ordre de 100-1000). Étant donné que l'encodage à chaud crée une variable fictive pour …

1
Sélection de fonctionnalités à l'aide d'importances de fonctionnalités dans des forêts aléatoires avec scikit-learn
J'ai tracé les importances des fonctionnalités dans des forêts aléatoires avec scikit-learn . Afin d'améliorer la prédiction à l'aide de forêts aléatoires, comment puis-je utiliser les informations de tracé pour supprimer des entités? C'est-à-dire comment repérer si une fonctionnalité est inutile ou pire encore une diminution des performances des forêts …

3
Existe-t-il de bons modèles de langage prêts à l'emploi pour python?
Je prototype une application et j'ai besoin d'un modèle de langage pour calculer la perplexité sur certaines phrases générées. Existe-t-il un modèle de langage formé en python que je peux facilement utiliser? Quelque chose de simple comme model = LanguageModel('en') p1 = model.perplexity('This is a well constructed sentence') p2 = …
11 python  nlp  language-model  r  statistics  linear-regression  machine-learning  classification  random-forest  xgboost  python  sampling  data-mining  orange  predictive-modeling  recommender-system  statistics  dimensionality-reduction  pca  machine-learning  python  deep-learning  keras  reinforcement-learning  neural-network  image-classification  r  dplyr  deep-learning  keras  tensorflow  lstm  dropout  machine-learning  sampling  categorical-data  data-imputation  machine-learning  deep-learning  machine-learning-model  dropout  deep-network  pandas  data-cleaning  data-science-model  aggregation  python  neural-network  reinforcement-learning  policy-gradients  r  dataframe  dataset  statistics  prediction  forecasting  r  k-means  python  scikit-learn  labels  python  orange  cloud-computing  machine-learning  neural-network  deep-learning  rnn  recurrent-neural-net  logistic-regression  missing-data  deep-learning  autoencoder  apache-hadoop  time-series  data  preprocessing  classification  predictive-modeling  time-series  machine-learning  python  feature-selection  autoencoder  deep-learning  keras  tensorflow  lstm  word-embeddings  predictive-modeling  prediction  machine-learning-model  machine-learning  classification  binary  theory  machine-learning  neural-network  time-series  lstm  rnn  neural-network  deep-learning  keras  tensorflow  convnet  computer-vision 


4
Lequel en premier: analyse comparative des algorithmes, sélection des fonctionnalités, réglage des paramètres?
En essayant de faire par exemple une classification, mon approche est actuellement de essayez d'abord différents algorithmes et comparez-les effectuer la sélection des fonctionnalités sur le meilleur algorithme parmi 1 régler les paramètres en utilisant les fonctionnalités et l'algorithme sélectionnés Cependant, je ne peux souvent pas me convaincre qu'il peut …




3
Meilleures langues pour le calcul scientifique [fermé]
Fermé . Cette question doit être plus ciblée . Il n'accepte pas actuellement les réponses. Voulez-vous améliorer cette question? Mettez à jour la question afin qu'elle se concentre sur un problème uniquement en modifiant ce message . Fermé il y a 5 ans . Il semble que la plupart des …
10 efficiency  statistics  tools  knowledge-base  machine-learning  neural-network  deep-learning  optimization  hyperparameter  machine-learning  time-series  categorical-data  logistic-regression  python  visualization  bigdata  efficiency  classification  binary  svm  random-forest  logistic-regression  data-mining  sql  experiments  bigdata  efficiency  performance  scalability  distributed  bigdata  nlp  statistics  education  knowledge-base  definitions  machine-learning  recommender-system  evaluation  efficiency  algorithms  parameter  efficiency  scalability  sql  statistics  visualization  knowledge-base  education  machine-learning  r  python  r  text-mining  sentiment-analysis  machine-learning  machine-learning  python  neural-network  statistics  reference-request  machine-learning  data-mining  python  classification  data-mining  bigdata  usecase  apache-hadoop  map-reduce  aws  education  feature-selection  machine-learning  machine-learning  sports  data-formats  hierarchical-data-format  bigdata  apache-hadoop  bigdata  apache-hadoop  python  visualization  knowledge-base  classification  confusion-matrix  accuracy  bigdata  apache-hadoop  bigdata  efficiency  apache-hadoop  distributed  machine-translation  nlp  metadata  data-cleaning  text-mining  python  pandas  machine-learning  python  pandas  scikit-learn  bigdata  machine-learning  databases  clustering  data-mining  recommender-system 


4
Relation entre la sélection des caractéristiques et la précision de la classification
L'une des méthodes pour sélectionner un sous-ensemble de vos fonctionnalités disponibles pour votre classificateur consiste à les classer en fonction d'un critère (tel que le gain d'informations), puis à calculer la précision à l'aide de votre classificateur et d'un sous-ensemble des fonctionnalités classées. Par exemple, si vos fonctionnalités le sont …


3
Les coordonnées GPS (latitude et longitude) peuvent-elles être utilisées comme entités dans un modèle linéaire?
J'ai des ensembles de données qui contiennent, parmi de nombreuses fonctionnalités, des coordonnées GPS (latitude et longitude). Je voudrais utiliser ces ensembles de données pour explorer des problèmes tels que: (1) calculer l'ETA pour conduire entre les points de début et de fin; et (2) estimer le degré de criminalité …

En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.