Questions marquées «cnn»

Les réseaux de neurones convolutifs (CNN, également appelés ConvNets) sont un outil utilisé pour les tâches de classification et la reconnaissance d'images. Le nom donnant la première étape est l'extraction des entités à partir des données d'entrée.




1
Comment ajouter des fonctionnalités sans image le long des images latérales en tant qu'entrée des CNN
J'entraîne un réseau neuronal convolutionnel pour classer les images sur les conditions de brouillard (3 classes). Cependant, pour chacune des 150 000 images environ, j'ai également quatre variables météorologiques disponibles qui pourraient aider à prévoir les classes d'images. Je me demandais comment je pourrais ajouter les variables météorologiques (par exemple …



1
Combien de cellules LSTM dois-je utiliser?
Existe-t-il des règles générales (ou des règles réelles) concernant la quantité minimale, maximale et "raisonnable" de cellules LSTM que je devrais utiliser? Plus précisément, je me rapporte à BasicLSTMCell de TensorFlow et à la num_unitspropriété. Veuillez supposer que j'ai un problème de classification défini par: t - number of time …
12 rnn  machine-learning  r  predictive-modeling  random-forest  python  language-model  sentiment-analysis  encoding  machine-learning  deep-learning  neural-network  dataset  caffe  classification  xgboost  multiclass-classification  unbalanced-classes  time-series  descriptive-statistics  python  r  clustering  machine-learning  python  deep-learning  tensorflow  machine-learning  python  predictive-modeling  probability  scikit-learn  svm  machine-learning  python  classification  gradient-descent  regression  research  python  neural-network  deep-learning  convnet  keras  python  tensorflow  machine-learning  deep-learning  tensorflow  python  r  bigdata  visualization  rstudio  pandas  pyspark  dataset  time-series  multilabel-classification  machine-learning  neural-network  ensemble-modeling  kaggle  machine-learning  linear-regression  cnn  convnet  machine-learning  tensorflow  association-rules  machine-learning  predictive-modeling  training  model-selection  neural-network  keras  deep-learning  deep-learning  convnet  image-classification  predictive-modeling  prediction  machine-learning  python  classification  predictive-modeling  scikit-learn  machine-learning  python  random-forest  sampling  training  recommender-system  books  python  neural-network  nlp  deep-learning  tensorflow  python  matlab  information-retrieval  search  search-engine  deep-learning  convnet  keras  machine-learning  python  cross-validation  sampling  machine-learning 




3
Relation entre la convolution en mathématiques et CNN
J'ai lu l' explication de la convolution et je la comprends dans une certaine mesure. Quelqu'un peut-il m'aider à comprendre comment cette opération est liée à la convolution dans les réseaux neuronaux convolutionnels? Le filtre est-il une fonction gqui applique du poids?
10 machine-learning  neural-network  deep-learning  cnn  convolution  machine-learning  ensemble-modeling  machine-learning  classification  data-mining  clustering  machine-learning  feature-selection  convnet  pandas  graphs  ipython  machine-learning  apache-spark  multiclass-classification  naive-bayes-classifier  multilabel-classification  machine-learning  data-mining  dataset  data-cleaning  data  machine-learning  data-mining  statistics  correlation  machine-learning  data-mining  dataset  data-cleaning  data  beginner  career  python  r  visualization  machine-learning  data-mining  nlp  stanford-nlp  dataset  linear-regression  time-series  correlation  anomaly-detection  ensemble-modeling  data-mining  machine-learning  python  data-mining  recommender-system  machine-learning  cross-validation  model-selection  scoring  prediction  sequential-pattern-mining  categorical-data  python  tensorflow  image-recognition  statistics  machine-learning  data-mining  predictive-modeling  data-cleaning  preprocessing  classification  deep-learning  tensorflow  machine-learning  algorithms  data  keras  categorical-data  reference-request  loss-function  classification  logistic-regression  apache-spark  prediction  naive-bayes-classifier  beginner  nlp  word2vec  vector-space-models  scikit-learn  decision-trees  data  programming 

1
Que sont les «VGG54» et «VGG22» dérivés du VGG19 CNN?
Dans l'article Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network de Christian Ledig et al., La distance entre les images (utilisée dans la fonction de perte) est calculée à partir de cartes de caractéristiques extraites du réseau VGG19. Les deux utilisés dans l'article sont (un peu confus) appelés VGG22 …


En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.