Questions marquées «neural-networks»

Les réseaux de neurones artificiels (RNA) sont une large classe de modèles de calcul librement basés sur des réseaux de neurones biologiques. Ils englobent les NN à action directe (y compris les NN "profonds"), les NN convolutifs, les NN récurrents, etc.


2
Qu'est-ce que mon réseau de neurones vient d'apprendre? De quelles fonctionnalités se soucie-t-il et pourquoi?
Un réseau neuronal apprend les caractéristiques d'un ensemble de données comme moyen d'atteindre un objectif. Une fois cela fait, nous pouvons vouloir savoir ce que le réseau neuronal a appris. Quelles étaient les fonctionnalités et pourquoi s'en souciait-il? Quelqu'un peut-il donner quelques références sur l'ensemble des travaux qui concernent ce …





5
Comment gérer les données hiérarchiques / imbriquées dans l'apprentissage automatique
Je vais expliquer mon problème avec un exemple. Supposons que vous souhaitiez prédire le revenu d'un individu en fonction de certains attributs: {âge, sexe, pays, région, ville}. Vous avez un ensemble de données de formation comme ça train <- data.frame(CountryID=c(1,1,1,1, 2,2,2,2, 3,3,3,3), RegionID=c(1,1,1,2, 3,3,4,4, 5,5,5,5), CityID=c(1,1,2,3, 4,5,6,6, 7,7,7,8), Age=c(23,48,62,63, 25,41,45,19, …
29 regression  machine-learning  multilevel-analysis  correlation  dataset  spatial  paired-comparisons  cross-correlation  clustering  aic  bic  dependent-variable  k-means  mean  standard-error  measurement-error  errors-in-variables  regression  multiple-regression  pca  linear-model  dimensionality-reduction  machine-learning  neural-networks  deep-learning  conv-neural-network  computer-vision  clustering  spss  r  weighted-data  wilcoxon-signed-rank  bayesian  hierarchical-bayesian  bugs  stan  distributions  categorical-data  variance  ecology  r  survival  regression  r-squared  descriptive-statistics  cross-section  maximum-likelihood  factor-analysis  likert  r  multiple-imputation  propensity-scores  distributions  t-test  logit  probit  z-test  confidence-interval  poisson-distribution  deep-learning  conv-neural-network  residual-networks  r  survey  wilcoxon-mann-whitney  ranking  kruskal-wallis  bias  loss-functions  frequentist  decision-theory  risk  machine-learning  distributions  normal-distribution  multivariate-analysis  inference  dataset  factor-analysis  survey  multilevel-analysis  clinical-trials 


3

4
Comment est-il possible que la perte de validation augmente alors que la précision de validation augmente également
J'entraîne un réseau neuronal simple sur l'ensemble de données CIFAR10. Après un certain temps, la perte de validation a commencé à augmenter, tandis que la précision de validation augmente également. La perte de test et la précision du test continuent de s'améliorer. Comment est-ce possible? Il semble que si la …

3
Ne peut-on pas dire maintenant que les modèles d'apprentissage profond sont interprétables? Les nœuds sont-ils des fonctionnalités?
Pour les modèles statistiques et d'apprentissage automatique, il existe plusieurs niveaux d'interprétabilité: 1) l'algorithme dans son ensemble, 2) des parties de l'algorithme en général 3) des parties de l'algorithme sur des entrées particulières, et ces trois niveaux divisés en deux parties chacun, un pour la formation et un pour la …





En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.