Markov Chain Monte Carlo (MCMC) fait référence à une classe de méthodes pour générer des échantillons à partir d'une distribution cible en générant des nombres aléatoires à partir d'une chaîne de Markov dont la distribution stationnaire est la distribution cible. Les méthodes MCMC sont généralement utilisées lorsque des méthodes plus directes pour la génération de nombres aléatoires (par exemple la méthode d'inversion) sont irréalisables. La première méthode MCMC était l'algorithme Metropolis, plus tard modifié en l'algorithme Metropolis-Hastings.