Questions marquées «classification»

La classification statistique est le problème de l'identification de la sous-population à laquelle appartiennent de nouvelles observations, où l'identité de la sous-population est inconnue, sur la base d'un ensemble d'apprentissage de données contenant des observations dont la sous-population est connue. Ces classifications montreront donc un comportement variable qui peut être étudié par des statistiques.


3
Mesures de classification / évaluation pour les données très déséquilibrées
Je fais face à un problème de détection de fraude (de type notation de crédit). En tant que tel, il existe une relation très déséquilibrée entre les observations frauduleuses et non frauduleuses. http://blog.revolutionanalytics.com/2016/03/com_class_eval_metrics_r.html fournit un excellent aperçu des différentes métriques de classification. Precision and Recallou les kappadeux semblent être un …



3
De la règle du Perceptron à la descente en gradient: en quoi les Perceptrons avec une fonction d'activation sigmoïde sont-ils différents de la régression logistique?
Essentiellement, ma question est que dans les Perceptrons multicouches, les perceptrons sont utilisés avec une fonction d'activation sigmoïde. Alors que dans la règle de mise à jour y est calculée comme suity^y^\hat{y} y^=11+exp(−wTxi)y^=11+exp⁡(−wTxi)\hat{y} = \frac{1}{1+\exp(-\mathbf{w}^T\mathbf{x}_i)} En quoi ce Perceptron "sigmoïde" diffère-t-il alors d'une régression logistique? Je dis qu'un perceptron sigmoïde …




5
Quelle est la bonne façon de tester la signification des résultats de la classification
Il existe de nombreuses situations où vous pouvez former plusieurs classificateurs différents ou utiliser plusieurs méthodes d'extraction de fonctionnalités différentes. Dans la littérature, les auteurs donnent souvent l'erreur de classification moyenne sur un ensemble de divisions aléatoires des données (c'est-à-dire après une validation croisée doublement imbriquée), et donnent parfois aussi …

4
Comment projeter un nouveau vecteur sur l'espace PCA?
Après avoir effectué l'analyse des composants principaux (PCA), je souhaite projeter un nouveau vecteur sur l'espace PCA (c'est-à-dire trouver ses coordonnées dans le système de coordonnées PCA). J'ai calculé PCA en langage R en utilisant prcomp. Maintenant, je devrais pouvoir multiplier mon vecteur par la matrice de rotation PCA. Les …
21 r  pca  r  variance  heteroscedasticity  misspecification  distributions  time-series  data-visualization  modeling  histogram  kolmogorov-smirnov  negative-binomial  likelihood-ratio  econometrics  panel-data  categorical-data  scales  survey  distributions  pdf  histogram  correlation  algorithms  r  gpu  parallel-computing  approximation  mean  median  references  sample-size  normality-assumption  central-limit-theorem  rule-of-thumb  confidence-interval  estimation  mixed-model  psychometrics  random-effects-model  hypothesis-testing  sample-size  dataset  large-data  regression  standard-deviation  variance  approximation  hypothesis-testing  variance  central-limit-theorem  kernel-trick  kernel-smoothing  error  sampling  hypothesis-testing  normality-assumption  philosophical  confidence-interval  modeling  model-selection  experiment-design  hypothesis-testing  statistical-significance  power  asymptotics  information-retrieval  anova  multiple-comparisons  ancova  classification  clustering  factor-analysis  psychometrics  r  sampling  expectation-maximization  markov-process  r  data-visualization  correlation  regression  statistical-significance  degrees-of-freedom  experiment-design  r  regression  curve-fitting  change-point  loess  machine-learning  classification  self-study  monte-carlo  markov-process  references  mathematical-statistics  data-visualization  python  cart  boosting  regression  classification  robust  cart  survey  binomial  psychometrics  likert  psychology  asymptotics  multinomial 

3
Apprentissage automatique pour prédire les probabilités de classe
Je recherche des classificateurs qui produisent des probabilités que les exemples appartiennent à l'une des deux classes. Je connais la régression logistique et les Bayes naïfs, mais pouvez-vous m'en parler d'autres qui fonctionnent de manière similaire? Autrement dit, les classificateurs qui prédisent non pas les classes auxquelles appartiennent les exemples, …

3
Test de séparabilité linéaire
Existe-t-il un moyen de tester la séparabilité linéaire d'un ensemble de données à deux classes dans des dimensions élevées? Mes vecteurs de caractéristiques mesurent 40 ans. Je sais que je peux toujours exécuter des expériences de régression logistique et déterminer le taux de réussite par rapport au taux de fausse …


1
Comment LDA, une technique de classification, sert également de technique de réduction de dimensionnalité comme l'ACP
Dans cet article , l'auteur relie l'analyse discriminante linéaire (LDA) à l'analyse en composantes principales (ACP). Avec mes connaissances limitées, je ne suis pas en mesure de comprendre comment LDA peut être quelque peu similaire à PCA. J'ai toujours pensé que LDA était une forme d'algorithme de classification, similaire à …


En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.