Questions marquées «clustering»

L'analyse de cluster ou le clustering consiste à regrouper un ensemble d'objets de telle sorte que les objets du même groupe (appelé cluster) soient plus similaires (dans un sens ou dans un autre) les uns aux autres qu'à ceux des autres groupes (clusters) . Il s'agit d'une tâche principale d'exploration de données d'exploration et d'une technique commune d'analyse de données statistiques, utilisée dans de nombreux domaines, notamment l'apprentissage automatique, la reconnaissance de formes, l'analyse d'images, la recherche d'informations, etc.

2
Regroupement des visiteurs uniques par useragent, ip, session_id
Étant donné les données d'accès au site Web sous la forme session_id, ip, user_agent, et éventuellement l'horodatage, en suivant les conditions ci-dessous, comment regrouperiez-vous au mieux les sessions en visiteurs uniques? session_id: est un identifiant donné à chaque nouveau visiteur. Il n'expire pas, mais si l'utilisateur n'accepte pas les cookies …
15 clustering 





1
MinHashing vs SimHashing
Supposons que j'ai cinq ensembles que j'aimerais regrouper. Je comprends que la technique SimHashing décrite ici: https://moultano.wordpress.com/2010/01/21/simple-simhashing-3kbzhsxyg4467-6/ pourrait produire trois grappes ( {A}, {B,C,D}et {E}), par exemple, si ses résultats étaient: A -> h01 B -> h02 C -> h02 D -> h02 E -> h03 De même, la technique …

1
Combien de cellules LSTM dois-je utiliser?
Existe-t-il des règles générales (ou des règles réelles) concernant la quantité minimale, maximale et "raisonnable" de cellules LSTM que je devrais utiliser? Plus précisément, je me rapporte à BasicLSTMCell de TensorFlow et à la num_unitspropriété. Veuillez supposer que j'ai un problème de classification défini par: t - number of time …
12 rnn  machine-learning  r  predictive-modeling  random-forest  python  language-model  sentiment-analysis  encoding  machine-learning  deep-learning  neural-network  dataset  caffe  classification  xgboost  multiclass-classification  unbalanced-classes  time-series  descriptive-statistics  python  r  clustering  machine-learning  python  deep-learning  tensorflow  machine-learning  python  predictive-modeling  probability  scikit-learn  svm  machine-learning  python  classification  gradient-descent  regression  research  python  neural-network  deep-learning  convnet  keras  python  tensorflow  machine-learning  deep-learning  tensorflow  python  r  bigdata  visualization  rstudio  pandas  pyspark  dataset  time-series  multilabel-classification  machine-learning  neural-network  ensemble-modeling  kaggle  machine-learning  linear-regression  cnn  convnet  machine-learning  tensorflow  association-rules  machine-learning  predictive-modeling  training  model-selection  neural-network  keras  deep-learning  deep-learning  convnet  image-classification  predictive-modeling  prediction  machine-learning  python  classification  predictive-modeling  scikit-learn  machine-learning  python  random-forest  sampling  training  recommender-system  books  python  neural-network  nlp  deep-learning  tensorflow  python  matlab  information-retrieval  search  search-engine  deep-learning  convnet  keras  machine-learning  python  cross-validation  sampling  machine-learning 


4
Utilisation du clustering dans le traitement de texte
Bonjour, c'est ma première question dans la pile Data Science. Je veux créer un algorithme de classification de texte. Supposons que j'ai un grand ensemble de textes et d'articles. Disons environ 5000 textes en clair. J'utilise d'abord une fonction simple pour déterminer la fréquence de tous les mots de quatre …

3
Meilleures langues pour le calcul scientifique [fermé]
Fermé . Cette question doit être plus ciblée . Il n'accepte pas actuellement les réponses. Voulez-vous améliorer cette question? Mettez à jour la question afin qu'elle se concentre sur un problème uniquement en modifiant ce message . Fermé il y a 5 ans . Il semble que la plupart des …
10 efficiency  statistics  tools  knowledge-base  machine-learning  neural-network  deep-learning  optimization  hyperparameter  machine-learning  time-series  categorical-data  logistic-regression  python  visualization  bigdata  efficiency  classification  binary  svm  random-forest  logistic-regression  data-mining  sql  experiments  bigdata  efficiency  performance  scalability  distributed  bigdata  nlp  statistics  education  knowledge-base  definitions  machine-learning  recommender-system  evaluation  efficiency  algorithms  parameter  efficiency  scalability  sql  statistics  visualization  knowledge-base  education  machine-learning  r  python  r  text-mining  sentiment-analysis  machine-learning  machine-learning  python  neural-network  statistics  reference-request  machine-learning  data-mining  python  classification  data-mining  bigdata  usecase  apache-hadoop  map-reduce  aws  education  feature-selection  machine-learning  machine-learning  sports  data-formats  hierarchical-data-format  bigdata  apache-hadoop  bigdata  apache-hadoop  python  visualization  knowledge-base  classification  confusion-matrix  accuracy  bigdata  apache-hadoop  bigdata  efficiency  apache-hadoop  distributed  machine-translation  nlp  metadata  data-cleaning  text-mining  python  pandas  machine-learning  python  pandas  scikit-learn  bigdata  machine-learning  databases  clustering  data-mining  recommender-system 



1
Regroupement des données client stockées dans ElasticSearch
J'ai un tas de profils clients stockés dans un cluster elasticsearch . Ces profils sont désormais utilisés pour la création de groupes cibles pour nos abonnements par e-mail. Les groupes cibles sont désormais formés manuellement à l'aide des capacités de recherche à facettes d'elasticsearch (comme obtenir tous les hommes de …

3
Relation entre la convolution en mathématiques et CNN
J'ai lu l' explication de la convolution et je la comprends dans une certaine mesure. Quelqu'un peut-il m'aider à comprendre comment cette opération est liée à la convolution dans les réseaux neuronaux convolutionnels? Le filtre est-il une fonction gqui applique du poids?
10 machine-learning  neural-network  deep-learning  cnn  convolution  machine-learning  ensemble-modeling  machine-learning  classification  data-mining  clustering  machine-learning  feature-selection  convnet  pandas  graphs  ipython  machine-learning  apache-spark  multiclass-classification  naive-bayes-classifier  multilabel-classification  machine-learning  data-mining  dataset  data-cleaning  data  machine-learning  data-mining  statistics  correlation  machine-learning  data-mining  dataset  data-cleaning  data  beginner  career  python  r  visualization  machine-learning  data-mining  nlp  stanford-nlp  dataset  linear-regression  time-series  correlation  anomaly-detection  ensemble-modeling  data-mining  machine-learning  python  data-mining  recommender-system  machine-learning  cross-validation  model-selection  scoring  prediction  sequential-pattern-mining  categorical-data  python  tensorflow  image-recognition  statistics  machine-learning  data-mining  predictive-modeling  data-cleaning  preprocessing  classification  deep-learning  tensorflow  machine-learning  algorithms  data  keras  categorical-data  reference-request  loss-function  classification  logistic-regression  apache-spark  prediction  naive-bayes-classifier  beginner  nlp  word2vec  vector-space-models  scikit-learn  decision-trees  data  programming 

2
Quand choisir la régression linéaire ou l'arbre de décision ou la régression de forêt aléatoire? [fermé]
Fermé . Cette question doit être plus ciblée . Il n'accepte pas actuellement de réponses. Voulez-vous améliorer cette question? Mettez à jour la question pour qu'elle se concentre sur un seul problème en modifiant ce post . Fermé il y a 4 ans . Je travaille sur un projet et …
10 machine-learning  algorithms  random-forest  linear-regression  decision-trees  machine-learning  predictive-modeling  forecast  r  clustering  similarity  data-mining  dataset  statistics  text-mining  text-mining  data-cleaning  data-wrangling  machine-learning  classification  algorithms  xgboost  data-mining  dataset  dataset  regression  graphs  svm  unbalanced-classes  cross-validation  optimization  hyperparameter  genetic-algorithms  visualization  predictive-modeling  correlation  machine-learning  predictive-modeling  apache-spark  statistics  normalization  apache-spark  map-reduce  r  correlation  confusion-matrix  r  data-cleaning  classification  terminology  dataset  image-classification  machine-learning  regression  apache-spark  machine-learning  data-mining  nlp  parsing  machine-learning  dimensionality-reduction  visualization  clustering  multiclass-classification  evaluation  unsupervised-learning  machine-learning  machine-learning  data-mining  supervised-learning  unsupervised-learning  machine-learning  data-mining  classification  statistics  predictive-modeling  data-mining  clustering  python  pandas  machine-learning  dataset  data-cleaning  data  bigdata  software-recommendation 

En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.