Questions marquées «predictive-models»

Les modèles prédictifs sont des modèles statistiques dont le but principal est de prédire de manière optimale d'autres observations d'un système, par opposition aux modèles dont le but est de tester une hypothèse particulière ou d'expliquer un phénomène mécaniquement. En tant que tels, les modèles prédictifs mettent moins l'accent sur l'interprétabilité et davantage sur la performance.





3
l'opportunité de remettre à l'échelle l'indicateur / les prédicteurs binaires / fictifs pour LASSO
Pour le LASSO (et d'autres procédures de sélection de modèle), il est crucial de redimensionner les prédicteurs. La recommandation générale que je suis consiste simplement à utiliser une normalisation de 0 moyenne, 1 écart-type pour les variables continues. Mais que faire avec les nuls? Par exemple, certains exemples appliqués de …

2
Pourquoi les valeurs de p sont-elles trompeuses après avoir effectué une sélection pas à pas?
Prenons par exemple un modèle de régression linéaire. J'ai entendu dire que, dans l'exploration de données, après avoir effectué une sélection par étapes basée sur le critère AIC, il est trompeur de regarder les valeurs de p pour tester l'hypothèse nulle selon laquelle chaque véritable coefficient de régression est nul. …

1
Les degrés de liberté peuvent-ils être un nombre non entier?
Lorsque j'utilise GAM, cela me donne un DF résiduel de (dernière ligne du code). Qu'est-ce que ça veut dire? Au-delà de l'exemple GAM, en général, le nombre de degrés de liberté peut-il être un nombre non entier?26.626.626.6 > library(gam) > summary(gam(mpg~lo(wt),data=mtcars)) Call: gam(formula = mpg ~ lo(wt), data = mtcars) …
27 r  degrees-of-freedom  gam  machine-learning  pca  lasso  probability  self-study  bootstrap  expected-value  regression  machine-learning  linear-model  probability  simulation  random-generation  machine-learning  distributions  svm  libsvm  classification  pca  multivariate-analysis  feature-selection  archaeology  r  regression  dataset  simulation  r  regression  time-series  forecasting  predictive-models  r  mean  sem  lavaan  machine-learning  regularization  regression  conv-neural-network  convolution  classification  deep-learning  conv-neural-network  regression  categorical-data  econometrics  r  confirmatory-factor  scale-invariance  self-study  unbiased-estimator  mse  regression  residuals  sampling  random-variable  sample  probability  random-variable  convergence  r  survival  weibull  references  autocorrelation  hypothesis-testing  distributions  correlation  regression  statistical-significance  regression-coefficients  univariate  categorical-data  chi-squared  regression  machine-learning  multiple-regression  categorical-data  linear-model  pca  factor-analysis  factor-rotation  classification  scikit-learn  logistic  p-value  regression  panel-data  multilevel-analysis  variance  bootstrap  bias  probability  r  distributions  interquartile  time-series  hypothesis-testing  normal-distribution  normality-assumption  kurtosis  arima  panel-data  stata  clustered-standard-errors  machine-learning  optimization  lasso  multivariate-analysis  ancova  machine-learning  cross-validation 


4
Prédire avec des fonctionnalités continues et catégoriques
Certaines techniques de modélisation prédictive sont plus conçues pour gérer des prédicteurs continus, tandis que d'autres sont meilleures pour gérer des variables catégorielles ou discrètes. Il existe bien sûr des techniques pour transformer un type en un autre (discrétisation, variables muettes, etc.). Cependant, existe-t-il des techniques de modélisation prédictive conçues …


4
Quel problème le suréchantillonnage, le sous-échantillonnage et SMOTE résolvent-ils?
Dans une question récente et bien reçue, Tim demande quand les données non équilibrées sont-elles vraiment un problème dans le Machine Learning ? La prémisse de la question est qu'il y a beaucoup de littérature d'apprentissage automatique discutant de l'équilibre des classes et du problème des classes déséquilibrées . L'idée …


3
Validation croisée ou amorçage pour évaluer les performances de classification?
Quelle est la méthode d'échantillonnage la plus appropriée pour évaluer la performance d'un classificateur sur un ensemble de données particulier et la comparer avec d'autres classificateurs? La validation croisée semble être une pratique standard, mais j'ai lu que des méthodes telles que le bootstrap .632 sont un meilleur choix. À …



En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.